Quantum Information: an invitation for mathematicians

dc.conference.dateSEP 03-06, 2008
dc.conference.placeUniv Cantabria, Castro Urdiales, Spain
dc.conference.title17th International Fall Workshop on Geometry and Physics
dc.contributor.authorPérez García, David
dc.date.accessioned2023-06-20T14:17:06Z
dc.date.available2023-06-20T14:17:06Z
dc.date.issued2009
dc.descriptionGeometry and Physics: 17th International Fall Workshop on Geometry and Physics. AIP Conference Proceedings
dc.description.abstractQuantum Information is the science that aims to use the unusual behavior of the microscopic world, governed by the laws of Quantum Mechanics, in order to improve the way in which we compute or communicate information. Though the first ideas in this direction come from the early 80's, it is in the last decade when Quantum Information has suffered an spectacular development. It is impossible to resume in a paper like this one the importance and complexity of the field. Therefore, I will limit to briefly explain some of the initial ideas (considered classical by now), and to briefly suggest some of the modem lines of research. By the nature of this exposition, I have decided to avoid rigor and to concentrate more in ideas and intuitions. Anyhow, I have tried to provide with enough references, in such a way that an interested reader could find there proper theorems and proofs.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17752
dc.identifier.officialurlhttp://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1130&Issue=1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53966
dc.language.isoeng
dc.page.final43
dc.page.initial34
dc.relation.projectID(MTM2005-00082)
dc.relation.projectID(CCG07-UCM/ESP-2797)
dc.relation.projectIDI-MATH
dc.rights.accessRightsrestricted access
dc.subject.cdu530.145
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleQuantum Information: an invitation for mathematicians
dc.typeconference paper
dcterms.referencesA. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett., 98, 230501 (2007). A. Acin, N. Gisin, L. Masanes, From Bell's Theorem to Secure Quantum Key Distribution, Phys. Rev. Lett., 97, 120405 (2006). W. Diflfie and M. E. Hellman, New Directions in Cryptography, IEEE Trans. Inf. Theory 22, 644-654 (1976). S.J. van Enk, J.I. Cirac, P. ZoUer, Photonic Channels for Quantum Communication, Science 279, 205 (1998). E. Farhi, J. Goldstone, S. Gutmann, A Quantum Algorithm for the Hamiltonian NAND Tree, arxiv:quant-ph/0702144. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum Computation by Adiahatic Evolution, arXiv:quant-ph/0001106. D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, R. de Wolf, Exponential separations for one-way quantum communication complexity, with applications to cryptography. Proceedings of the 39-th annual ACM symposium on Theory of computing (2007), 516 - 525. L.K. Grover, A fast quantum mechanical algorithm for database search. Proceedings, 28th Annual ACM Symposium on the Theory of Computing, (May 1996) p. 212. M.B. Hastings, An Area Law for One Dimensional Quantum Systems, JSTAT, P08024 (2007). R. Jozsa, On the simulation of quantum circuits, quant-ph/0603163. A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. of Phys. 303, 2-30 (2003). L. Masanes, R. Renner, A. Winter, J. Barrett, M. Christandl, Security of key distribution from causality constraints, arXiv:quant-ph/0606049. L. Masanes, Universally-composahle privacy amplification from causality constraints,arXiv:0807.2158. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000. D. Perez-Garcia, F. Verstraete, M.M Wolf, J.I. Cirac, Matrix Product State Representations, Quant. Inf Comp. 7, 401 (2007). R. Raussendorf, H. J. Briegel, A One-Way Quantum Computer, Phys. Rev. Lett. 86, 5188-5191 (2001). C. Schoen, E. Solano, F. Verstraete, J. I. Cirac, M. M. Wolf, Sequential generation of entangled multi-qubit states, Phys. Rev. Lett. 95, 110503 (2005). N. Schuch, M.M Wolf, F. Verstraete, J. I. Cirac, The computational complexity of PEPS, Phys. Rev. Lett. 98, 140506 (2007). P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proc. 35nd Annual Symposium on Foundations of Computer Science (1994), 124-134. F. Verstraete, J.I. Cirac, Valence Bond Solids for Quantum Computation , Phys. Rev. A 70, 060302(R) (2004). F. Verstraete, M.M. Wolf, D. Perez-Garcia, J. I. Cirac, Criticality, the area law, and the computational power of PEPS, Phys. Rev. Lett. 96, 220601 (2006). R.F. Werner, M.M. Wolf, Bell inequalities and Entanglement, Quant. Inf. Comp., 1 no. 3, 1-25 (2001).
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PerezGarcia21.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format