Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Simulated nitrogen deposition influences soil greenhouse gas fluxes in a Mediterranean dryland

Citation

Abstract

Soil nitrogen (N) availability is a key driver of soil-atmosphere greenhouse gas (GHG) exchange, yet we are far from understanding how increases in N deposition due to human activities will influence the net soilatmosphere fluxes of the three most important GHGs: nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). We simulated four levels of N deposition (10, 20 and 50 kg N ha−1 yr−1 , plus unfertilised control) to evaluate their effects on N2O, CH4 and CO2 soil fluxes in a semiarid shrubland in central Spain. After 8 years of experimental fertilisation, increasing N availability led to a consistent increase in N2O emissions, likely due to simultaneous increases in soil microbial nitrification and/or denitrification processes. However, only intermediate levels of N fertilisation reduced CH4 uptake, while increasing N fertilisation had no effects on CO2 fluxes, suggesting complex interactions between N deposition loads and GHG fluxes. Our study provides novel insight into the responses of GHGs to N deposition in drylands, forecasting increases in N2O emissions, and decreases in CH4 uptake rates, with likely consequences to the on-going climate change.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections