Jacobi group symmetry of Hamilton's mechanics
dc.contributor.author | Low, Stephen G. | |
dc.contributor.author | Campoamor Stursberg, Otto-Rudwig | |
dc.date.accessioned | 2024-07-08T12:02:51Z | |
dc.date.available | 2024-07-08T12:02:51Z | |
dc.date.issued | 2024 | |
dc.description.abstract | We show that diffeomorphisms of an extended phase space with time, energy, momentum and position degrees of freedom leaving invariant a symplectic 2-form and a degenerate orthogonal metric dt2, corresponding to the Newtonian time line element, locally satisfy Hamilton’s equations up to the usual canonical transformation on the position-momentum subspace. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.doi | 10.1016/j.geomphys.2024.105249 | |
dc.identifier.issn | 0393-0440 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/105788 | |
dc.journal.title | Journal of Geometry and Physics | |
dc.language.iso | eng | |
dc.page.final | 105249-11 | |
dc.page.initial | 105249-1 | |
dc.publisher | Elsevier | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | embargoed access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.keyword | Noninertial symmetry | |
dc.subject.keyword | Jacobi group | |
dc.subject.keyword | Hamilton equations | |
dc.subject.keyword | Symplectic geometry | |
dc.subject.keyword | Weyl-Hesienberg group | |
dc.subject.keyword | Jacobi morphisms | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1206.02 Ecuaciones Diferenciales | |
dc.title | Jacobi group symmetry of Hamilton's mechanics | |
dc.type | journal article | |
dc.type.hasVersion | AM | |
dc.volume.number | 203 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 72801982-9f3c-4db0-b765-6e7b4aa2221b | |
relation.isAuthorOfPublication.latestForDiscovery | 72801982-9f3c-4db0-b765-6e7b4aa2221b |
Download
Original bundle
1 - 1 of 1