From Euclidean to Minkowski space with the Cauchy-Riemann equations

Thumbnail Image
Full text at PDC
Publication Date
Gimeno Segovia, Mercedes
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We present an elementary method to obtain Green’s functions in non-perturbative quantum field theory in Minkowski space from Green’s functions calculated in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes often is unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore, we suggest to use the Cauchy–Riemann equations, which perform the analytical continuation without assuming global information on the function in the entire complex plane, but only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge quantum chromodynamics, which is known from lattice and Dyson Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy–Riemann equations against high-frequency noise,which makes it difficult to achieve good accuracy. We also point out a few curious details related to the Wick rotation.
© Springer-Verlag
Unesco subjects
1. D.M. O’Brien, Austral. J. Phys. 28, 7 (1975) 2. M. Peskin, E. Schroeder, An Introduction to Quantum Field Theory (Westview, Boulder, 1995) 3. C. Itzykson, Zuber, Quantum Field Theory Dover Publications Dover, New York, 2006) 4. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003). arXiv:nucl-th/0301049 5. M. Creutz, Rev. Mod. Phys. 73, 119 (2001). arXiv:hep lat/ 0007032 6. R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, Phys. Rev. D 70, 014014 (2004). arXiv:hep ph/0309077 7. R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, AIP Conf. Proc. 756, 272 (2005). arXiv:hep ph/0411367 8. V. Sauli, J. Adam, P. Bicudo, Phys. Rev. D 75, 087701 (2007). arXiv:hep-ph/0607196 9. V. Sauli, J. Adam, Phys. Rev. D 67, 085007 (2003). arXiv:hep-ph/0111433 10. V. Sauli, J. Adam, Nucl. Phys. A 689, 467 (2001). arXiv: hep-ph/0110298 11. K. Kusaka, A.G. Williams, Minkowski, Phys. Rev. D 51, 7026 (1995). arXiv:hep-ph/9501262 12. J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). arXiv:hepth/ 0512261 13. C.S. Fischer, J. Phys. G 32, R253 (2006). arXiv:hep ph/0605173 14. C. Bagnuls, C. Bervillier, Phys. Rep. 348, 91 (2001). arXiv:hep-th/0002034 15. M.B. Parappilly, P.O. Bowman, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. Zhang, Phys. Rev. D 73, 054504 (2006). arXiv:hep-lat/0511007 16. P. Bicudo, Phys. Rev. D 69, 074003 (2004). arXiv:hep ph/ 0312373 17. P.O. Bowman et al., Phys. Rev. D 76, 094505 (2007). arXiv:hep-lat/0703022