Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998

dc.contributor.authorBall, William T.
dc.contributor.authorChiodo, Gabriel
dc.contributor.authorÁbalos Álvarez, Marta
dc.contributor.authorAlsing, Justin
dc.contributor.authorStenke, Andrea
dc.date.accessioned2024-09-18T14:48:51Z
dc.date.available2024-09-18T14:48:51Z
dc.date.issued2020-08-20
dc.description.abstractThe stratospheric ozone layer shields surface life from harmful ultraviolet radiation. Following the Montreal Protocol ban on long-lived ozone-depleting substances (ODSs), rapid depletion of total column ozone (TCO) ceased in the late 1990s, and ozone above 32 km is now clearly recovering. However, there is still no confirmation of TCO recovery, and evidence has emerged that ongoing quasi-global (60∘ S–60∘ N) lower stratospheric ozone decreases may be responsible, dominated by low latitudes (30∘ S–30∘ N). Chemistry–climate models (CCMs) used to project future changes predict that lower stratospheric ozone will decrease in the tropics by 2100 but not at mid-latitudes (30–60∘). Here, we show that CCMs display an ozone decline similar to that observed in the tropics over 1998–2016, likely driven by an increase in tropical upwelling. On the other hand, mid-latitude lower stratospheric ozone is observed to decrease, while CCMs that specify real-world historical meteorological fields instead show an increase up to present day. However, these cannot be used to simulate future changes; we demonstrate here that free-running CCMs used for projections also show increases. Despite opposing lower stratospheric ozone changes, which should induce opposite temperature trends, CCMs and observed temperature trends agree; we demonstrate that opposing model–observation stratospheric water vapour (SWV) trends, and their associated radiative effects, explain why temperature changes agree in spite of opposing ozone trends. We provide new evidence that the observed mid-latitude trends can be explained by enhanced mixing between the tropics and extratropics. We further show that the temperature trends are consistent with the observed mid-latitude ozone decrease. Together, our results suggest that large-scale circulation changes expected in the future from increased greenhouse gases (GHGs) may now already be underway but that most CCMs do not simulate mid-latitude ozone layer changes well. However, it is important to emphasise that the periods considered here are short, and internal variability that is both intrinsic to each CCM and different to observed historical variability is not well-characterised and can influence trend estimates. Nevertheless, the reason CCMs do not exhibit the observed changes needs to be identified to allow models to be improved in order to build confidence in future projections of the ozone layer.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.fundingtypePagado por el autor
dc.description.refereedTRUE
dc.description.sponsorshipSwiss National Science Foundation (SNSF)
dc.description.sponsorshipSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
dc.description.statuspub
dc.identifier.citationBall, W. T., Chiodo, G., Abalos, M., Alsing, J., & Stenke, A. (2020). Inconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998. Atmospheric chemistry and physics, 20(16), 9737-9752.
dc.identifier.doi10.5194/acp-20-9737-2020
dc.identifier.essn1680-7324
dc.identifier.issn1680-7316
dc.identifier.officialurlhttps://doi.org/10.5194/acp-20-9737-2020
dc.identifier.relatedurlhttps://acp.copernicus.org/articles/20/9737/2020/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108235
dc.issue.number16
dc.journal.titleAtmospheric Chemistry and Physics
dc.language.isoeng
dc.page.final9752
dc.page.initial9737
dc.publisherEuropean Geosciences Union
dc.relation.projectID200020_182239
dc.relation.projectID200020_163206
dc.relation.projectIDPZ00P2180043
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu551.51
dc.subject.keywordBrewer-Dobson circulatoin
dc.subject.keywordWater-vapor
dc.subject.keywordReturn dates
dc.subject.keywordSensitivity recovery
dc.subject.keyword21st-century
dc.subject.keywordEmergen
dc.subject.keywordTransport
dc.subject.keywordDecline
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleInconsistencies between chemistry–climate models and observed lower stratospheric ozone trends since 1998
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number20
dspace.entity.typePublication
relation.isAuthorOfPublicationc9022703-3289-47be-a720-a8063f07ca36
relation.isAuthorOfPublication.latestForDiscoveryc9022703-3289-47be-a720-a8063f07ca36

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Balletal_2020_ACP.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format

Collections