Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fuzzy information representation for decision aiding

dc.book.titleProceedings of the IPMU Conference, Málaga, Spain
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorGómez González, Daniel
dc.contributor.authorMuñoz López, Susana
dc.contributor.editorMagdalena, L.
dc.contributor.editorOjeda Aciego, M.
dc.contributor.editorVerdegay, J. L.
dc.date.accessioned2023-06-20T13:41:25Z
dc.date.available2023-06-20T13:41:25Z
dc.date.issued2008
dc.descriptionInternational conference on information processing and management of uncertainty in knowledge-based systems (12 ; 2008 ; Malaga, Espagne).en
dc.description.abstractIn this paper we want to stress the relevance of decision aid procedures in complex decision making problems and claim for an extra effort in order to develop appropriate representation tools when fuzzy criteria or objectives are present. In particular, we point out how some painting algorithms may help decision makers to understand problems subject to fuzziness based upon a graphical first approach, like Statistics use to do. Moreover, we point out that although the standard communication tool with machines are either data or words, we should also consider certain families of graphics for such a role, mainly for the output.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28991
dc.identifier.isbn978-84-612-3061-7
dc.identifier.officialurlhttp://www.gimac.uma.es/ipmu08/proceedings/papers/189-monteroetal.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53396
dc.language.isoeng
dc.page.final1430
dc.page.initial1425
dc.publisher[Desconocido]
dc.relation.projectIDTIN2006-06190
dc.rights.accessRightsopen access
dc.subject.cdu519.8
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleFuzzy information representation for decision aidingen
dc.typebook part
dcterms.references[1] A. Amo, D. Gomez, J. Montero and G. Biging (2001): Relevance and redundancy in fuzzy classification systems. Mathware and Soft Computing 8:203–216. [2] A. Amo, J. Montero, G. Biging and V. Cutello (2004): Fuzzy classification systems. European Journal of Operational Research 156:459–507. [3] A. Amo, J. Montero and E. Molina (2001): Representation of consistent recursive rules. European Journal of Operational Research 130:29–53. [4] T. Calvo, G. Mayor and R. Mesiar,Eds. (2002): Aggregation Operators New Trends and Applications (Physica-Verlag, Heidelberg). [5] P. Cheeseman (1986): Probabilistic versus fuzzy reasoning. In Uncertainty in Artificial Intelligence, L.N. Kanal and J.F. Lemmer (eds.), Elsevier Science Pub., pages 85–102. [6] P. Cheeseman (1988): An inquiry into computer understanding (with discussion).Computational Intelligence 4:58–142. [7] V. Cutello and J. Montero (1999): Recursive connective rules. Int. J. Intelligent Systems 14, 3–20. [8] D. Dubois and H. Prade (1989): Fuzzy sets, probability and measurement. European Journal of Operational Research 40:135–154. [9] D. Dubois and H. Prade (1993): Fuzzy sets and probability, misunderstandings,bridges and gaps. In Second IEEE International Conference on Fuzzy Systems volume 2, IEEE Press, pages 1059–1068. [10] B. Dushnik and E.W. Miller (1941): Partially ordered sets. American Journal of Mathematics 63:600–610. [11] W. Feller (1968): An Introduction to Probability Theory and Its Applications,volume 1, Wiley. [12] J. Fodor and M. Roubens (1994): Fuzzy Preference Modelling and Multicriteria Decision Support. Theory and Decision Library (Kluwer Academic Publishers, Dordrecht). [13] S. French (1984): Fuzzy decision analysis:some criticisms. TIMS/Studies in the Management Sciences 20:29–44. [14] D. Gomez, G. Biging and J. Montero (in press): Accuracy statistics for judging soft classification. International Journal of Remote Sensing. [15] D. Gomez, J. Montero and J. Yañez (2006): Measuring criteria weights by means of dimension theory. Mathware and Soft Computing 13:173-188. [16] D. Gomez, J. Montero and J. Yañez (2006): A coloring algorithm for image classification. Information Sciences 176:3645-3657. [17] D. Gomez, J. Montero, J. Yañez and C. Poidomani (2007): A graph coloring algorithm approach for image segmentation. Omega 35:173–183. [18] J. Gonzalez-Pachon, D. Gomez, J. Montero and J. Yañez (2003): Searching for the dimension of binary valued preference relations. Int. J. Approximate Reasoning 33:133–157. [19] J. Gonzalez-Pachon, D. Gomez, J. Montero and J. Yañez (2003): Soft dimension theory. Fuzzy Sets and Systems 137:137–149. [20] G.J. Klir (1989): Is there more to uncertainty than some probability theorists might have us believe?.International Journal of General Systems 15:347–378. [21] A.N. Kolmogorov (1956): Foundations of the theory of probability, Chelsea Publishing. [22] M. Laviolette and J. Seaman (1994): The efficacy of fuzzy representations of uncertainty (with discussion).IEEE Transaction on Fuzzy Systems 2:4–42. [23] D.V. Lindley (1982): Scoring rules and the inevitability of probability. International Statistical Review 50 , 1–26. [24] J. Montero, D. Gomez and H. Bustince (2007): On the relevance of some families of fuzzy sets. Fuzzy Sets and Systems 158:2429-2442. [25] J. Montero, V. Lopez and D. Gomez (2007): The role of fuzziness in decision making. In D. Ruan et al. (eds.),Fuzzy Logic: an spectrum of applied and theoretical issues,Springer), pages 337–349. [26] J. Montero and M. Mendel (1998): Crisp acts, fuzzy decisions. In S. Barro et al.(eds.), Advances in Fuzzy Logic, Universidad de Santiago de Compostela, pages 219–238. [27] B. Natvig (1983): Possibility versus probability. Fuzzy Sets and Systems 10:31–36. [28] B. Roy (1993): Decision science or decision-aid science. European Journal of Operational Research 66:184–203. [29] E.H. Ruspini (1969): A new approach to clustering.Information and Control 15:22–32. [30] T.L. Saaty (1978): Exploring the interface between hierarchies, multiple objectives and fuzzy sets. Fuzzy Sets and Systems 1:57–68. [31] G. Shafer (1986): Savage revisited (with discussion). Statistical Science 1:463–501. [32] W. Stallings (1977): Fuzzy set theory versus bayesian statistics. IEEE Transaction on Systems, Man and Cybernetics 7:216–219. [33] M.H. Stone (1936): The Theory of Representations of Boolean Algebras. Transactions of the American Mathematical Society 40:37–111. [34] L.A. Zadeh (1965): Fuzzy sets. Information and Control 8:338–353. [35] L.A. Zadeh (1986): Is probability theory sufficient for dealing with uncertainty in AI, a negative view. In Uncertainty in Artificial Intelligence, L.N. Kanal and J.F. Lemmer (eds.), Elsevier, pages 103–116.
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication963b29aa-6e26-42f9-aaf2-8e5a238cbc87
relation.isAuthorOfPublication.latestForDiscovery963b29aa-6e26-42f9-aaf2-8e5a238cbc87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero116.pdf
Size:
84.02 KB
Format:
Adobe Portable Document Format