Design and catalytic studies of structural and functional models of the catechol oxidase enzyme
Loading...
Official URL
Full text at PDC
Publication date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Terán A, Jaafar A, Sánchez-Peláez AE, Torralba MC, Gutiérrez Á. Design and catalytic studies of structural and functional models of the catechol oxidase enzyme. J Biol Inorg Chem. 2020 Jun;25(4):671-683. doi: 10.1007/s00775-020-01791-2. Epub 2020 May 4. PMID: 32367388.
Abstract
The catechol oxidase activity of three copper/bicompartmental salen derivatives has been studied. One mononuclear, [CuL] (1), one homometallic, [Cu2L(NO3)2] (2), and one heterometallic, [CuMnL(NO3)2] (3) complexes were obtained using the ligand H2L = N,N'-bis(3-methoxysalicylidene)-1,3-propanediamine through different synthetic methods (electrochemical, chemical and solid state reaction). The structural data indicate that the metal ion disposition models the active site of type-3 copper enzymes, such as catechol oxidase. In this way, their ability to act as functional models of the enzyme has been spectrophotometrically determined by monitorization of the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butyl-o-benzoquinone (3,5-DTBQ). All the complexes show significant catalytic activity with ratio constants (kobs) lying in the range (223-294) × 10-4 min-1. A thorough kinetic study was carried out for complexes 2 and 3, since they show structural similarities with the catechol oxidase enzyme. The greatest catalytic activity was found for the homonuclear dicopper compound (2) with a turnover value (kcat) of (3.89 ± 0.05) × 106 h-1, which it is the higher reported to date, comparable to the enzyme itself (8.25 × 106 h-1).