Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Local stereovision matching through the ADALINE neural network

Loading...
Thumbnail Image

Full text at PDC

Publication date

2001

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science BV
Citations
Google Scholar

Citation

Abstract

This paper presents an approach to the local stereovision matching problem using edge segments as features with four attributes. Based on these attributes we compute a matching probability between pairs of features of the stereo images. A correspondence is said to be true when this probability is maximum. The probability value is a weighted sum of the attributes. We use two combined ADALINE neural networks to compute the weight for each attribute. A comparative analysis among other recent matching methods is illustrated.

Research Projects

Organizational Units

Journal Issue

Description

Part of the work has been performed under project CICYT TAP94-0832-C02-01. The constructive recommendations provided by the reviewers are also gratefully acknowledged.

Unesco subjects

Keywords

Collections