Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Blow-up in some ordinary and partial differential equations with time-delay

Loading...
Thumbnail Image

Full text at PDC

Publication date

2009

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Dynamic Publishers, Inc.
Citations
Google Scholar

Citation

Abstract

Blow-up phenomena are analyzed for both the delay-differential equation (DDE) u'(t) = B'(t)u(t - tau), and the associated parabolic PDE (PDDE) partial derivative(t)u=Delta u+B'(t)u(t-tau,x), where B : [0, tau] -> R is a positive L(1) function which behaves like 1/vertical bar t - t*vertical bar(alpha), for some alpha is an element of (0, 1) and t* is an element of (0,tau). Here B' represents its distributional derivative. For initial functions satisfying u(t* - tau) > 0, blow up takes place as t NE arrow t* and the behavior of the solution near t* is given by u(t) similar or equal to B(t)u(t - tau), and a similar result holds for the PDDE. The extension to some nonlinear equations is also studied: we use the Alekseev's formula (case of nonlinear (DDE)) and comparison arguments (case of nonlinear (PDDE)). The existence of solutions in some generalized sense, beyond t = t* is also addressed. This results is connected with a similar question raised by A. Friedman and J. B. McLeod in 1985 for the case of semilinear parabolic equations.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections