Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Boundary Observability For The Space Semi-Discretizations Of The 1-D Wave Equation

dc.contributor.authorInfante Del Río, Juan Antonio
dc.contributor.authorZuazua Iriondo, Enrique
dc.date.accessioned2023-06-20T16:56:21Z
dc.date.available2023-06-20T16:56:21Z
dc.date.issued1999
dc.description.abstractWe consider space semi-discretizations of the 1 − d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability,i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h ! 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the discrete system. When h ! 0 this nite-dimensional spaces increase and eventually cover the whole space. We thus recover the well-known observability property of the continuous system as the limit of discrete observability estimates as the mesh size tends to zero. We consider both nite-dierence and nite-element semi-discretizations.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16069
dc.identifier.doi10.1051/m2an:1999123
dc.identifier.issn0764-583X
dc.identifier.officialurlhttp://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8208264
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57470
dc.issue.number2
dc.journal.titleRairo-Mathematical Modelling And Numerical Analysis-Modelisation Mathematique Et Analyse Numerique
dc.language.isoeng
dc.page.final438
dc.page.initial407
dc.publisherGauthier-Villars/Editions Elsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu519.6
dc.subject.keywordwave equation
dc.subject.keywordsemi-discretization
dc.subject.keywordfinite difference
dc.subject.keywordfinite element
dc.subject.keywordboundary observability
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleBoundary Observability For The Space Semi-Discretizations Of The 1-D Wave Equation
dc.typejournal article
dc.volume.number33
dcterms.referencesM. Avellaneda, C. Bardos and J. Rauch, Controlabilite exacte,homogeneisation et localisation dóndes dans un milieu nonhomog ene. Asymptotic Analysis 5 (1992) 481{494. C.Castro and E. Zuazua, Contróle de l'equation des ondes a densite rapidement oscillante a une dimension d'espace. C. R.Acad. Sci. Paris 324 (1997) 1237-1242. R.Glowinski, Ensuring Well-Posedness by Analogy; Stokes Problem and Boundary Control for the Wave Equation. J. Comput.Phys. 103 (1992) 189-221. R.Glowinski, C.H. Li and J.L. Lions, A numerical approach to the exact boundary controllability of the wave equation. (I).Dirichlet Controls: Description of the numerical methods. Jap. J. Appl. Math. 7 (1990) 1-76. R. Glowinski and J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numerica (1996) 159-333. J.A. Infante and E. Zuazua, Boundary observability for the space-discretizations of the 1 − d wave equation. C.R. Acad. Sci.Paris 326 (1998) 713-718. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Mathematische Zeitschrift 41 (1936) 367-379. E. Isaacson and H.B. Keller, Analysis of Numerical Methods. John Wiley & Sons (1966). V. Komornik, Exact controllability and stabilization. The multiplier method. John Wiley & Sons, Masson (1994). E.B. Lee and L. Markus, Foundations of Optimal Control Theory, The SIAM Series in Applied Mathematics. John Wiley & Sons (1967). J.L. Lions, Controlabilite exacte, stabilisation et perturbations de systemes distribues. Tome 1. Controlabilite exacte. Masson, RMA8 (1988). R. Vichnevetsky and J.B. Bowles, Fourier analysis of numerical approximations of hyperbolic equations. SIAM, Philadelphia(1982).
dspace.entity.typePublication
relation.isAuthorOfPublicatione9307548-bcc4-44a6-8639-b485aa07a256
relation.isAuthorOfPublication8b66f606-26f7-4011-9dfb-585ec9c520ea
relation.isAuthorOfPublication.latestForDiscovery8b66f606-26f7-4011-9dfb-585ec9c520ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Infante04.pdf
Size:
510.82 KB
Format:
Adobe Portable Document Format

Collections