Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Geography of Non-Formal Manifolds

dc.book.titleComplex, Contact and Symmetric Manifolds
dc.contributor.authorFernández, Marisa
dc.contributor.authorMuñoz, Vicente
dc.contributor.editorKowalski, Oldrich
dc.contributor.editorMusso, Emilio
dc.contributor.editorPerrone, Domenico
dc.date.accessioned2023-06-20T13:39:21Z
dc.date.available2023-06-20T13:39:21Z
dc.date.issued2005
dc.description.abstractWe show that there exist non-formal compact oriented manifolds of dimension n and with first Betti number b 1 = b ≥ 0 if and only if n ≥ 3 and b ≥ 2, or n ≥ (7 − 2b) and 0 ≤ b ≤ 2. Moreover, we present explicit examples for each one of these cases.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21139
dc.identifier.doi10.1007/0-8176-4424-5_8
dc.identifier.isbn978-0-8176-3850-4
dc.identifier.officialurlhttp://link.springer.com/chapter/10.1007%2F0-8176-4424-5_8
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.relatedurlhttp://arxiv.org/pdf/math/0404527v2.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/53236
dc.issue.number234
dc.language.isoeng
dc.page.final129
dc.page.initial121
dc.page.total277
dc.publication.placeBirkhäuser Boston
dc.publisherSpringerLink
dc.relation.ispartofseriesProgress in Mathematics
dc.rights.accessRightsopen access
dc.subject.cdu514
dc.subject.keywordReal homotopy
dc.subject.keywordFormal manifolds
dc.subject.keywordMassey products
dc.subject.ucmGeometría
dc.subject.unesco1204 Geometría
dc.titleThe Geography of Non-Formal Manifolds
dc.typebook part
dcterms.referencesBott, R., Tu, L.W.: Differential forms in algebraic topology. Graduate Texts in Maths, 82. Springer Verlag (1982). Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math., 29, 245–274 (1975). Dranishnikov, A., Rudyak, Y.: Examples of non-formal closed simply connected manifolds of dimensions 7 and more.Preprint math.AT/0306299. Fernández, M., Gotay, M., Gray, A.: Compact parallelizable four dimensional symplectic and complex manifolds. Proc.Amer. Math. Soc., 103, 1209–1212 (1988). Fernández, M., Muñoz, V.: Formality of Donaldson submanifolds. Math. Zeit. In press. Fernández, M., Muñoz, V.: On non-formal simply connected manifolds. Topology and its Appl., 135, 111–117 (2004). Halperin, S.: Lectures on minimal models. Mém. Soc. Math.France, 230, (1983). Halperin, S., Gómez-Tato, A., Tanré, D.: Rational homotopy theory for non-simply connected spaces. Trans. Amer. Soc., 352, 1493–1525 (2000). Lalonde, F., McDuff, D., Polterovich, L.: On the flux conjectures. In: Geometry, topology, and dynamics (Montreal, 1995). CRM Proc. Lecture Notes, 15, 69–85 (1998). Miller, T.J.: On the formality of (k − 1) connected compact manifolds of dimension less than or equal to (4k − 2).Illinois. J. Math., 23, 253–258 (1979). Neisendorfer, J., Miller, T.J.: Formal and coformal spaces. Illinois. J. Math., 22, 565–580 (1978). 12.Oprea, J.: The Samelson space of a fibration. Michigan Math. J., 34, 127–141 (1987). Tanré, D.: Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan. Lecture Notes in Math., 1025, Springer Verlag 1983). Tralle, A., Oprea, J.: Symplectic manifolds with no Kähler structure. Lecture Notes in Math., 1661, Springer Verlag (1997).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz74libre.pdf
Size:
163.09 KB
Format:
Adobe Portable Document Format