The Geography of Non-Formal Manifolds
dc.book.title | Complex, Contact and Symmetric Manifolds | |
dc.contributor.author | Fernández, Marisa | |
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.editor | Kowalski, Oldrich | |
dc.contributor.editor | Musso, Emilio | |
dc.contributor.editor | Perrone, Domenico | |
dc.date.accessioned | 2023-06-20T13:39:21Z | |
dc.date.available | 2023-06-20T13:39:21Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We show that there exist non-formal compact oriented manifolds of dimension n and with first Betti number b 1 = b ≥ 0 if and only if n ≥ 3 and b ≥ 2, or n ≥ (7 − 2b) and 0 ≤ b ≤ 2. Moreover, we present explicit examples for each one of these cases. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21139 | |
dc.identifier.doi | 10.1007/0-8176-4424-5_8 | |
dc.identifier.isbn | 978-0-8176-3850-4 | |
dc.identifier.officialurl | http://link.springer.com/chapter/10.1007%2F0-8176-4424-5_8 | |
dc.identifier.relatedurl | http://link.springer.com | |
dc.identifier.relatedurl | http://arxiv.org/pdf/math/0404527v2.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53236 | |
dc.issue.number | 234 | |
dc.language.iso | eng | |
dc.page.final | 129 | |
dc.page.initial | 121 | |
dc.page.total | 277 | |
dc.publication.place | Birkhäuser Boston | |
dc.publisher | SpringerLink | |
dc.relation.ispartofseries | Progress in Mathematics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 514 | |
dc.subject.keyword | Real homotopy | |
dc.subject.keyword | Formal manifolds | |
dc.subject.keyword | Massey products | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 1204 Geometría | |
dc.title | The Geography of Non-Formal Manifolds | |
dc.type | book part | |
dcterms.references | Bott, R., Tu, L.W.: Differential forms in algebraic topology. Graduate Texts in Maths, 82. Springer Verlag (1982). Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kähler manifolds. Invent. Math., 29, 245–274 (1975). Dranishnikov, A., Rudyak, Y.: Examples of non-formal closed simply connected manifolds of dimensions 7 and more.Preprint math.AT/0306299. Fernández, M., Gotay, M., Gray, A.: Compact parallelizable four dimensional symplectic and complex manifolds. Proc.Amer. Math. Soc., 103, 1209–1212 (1988). Fernández, M., Muñoz, V.: Formality of Donaldson submanifolds. Math. Zeit. In press. Fernández, M., Muñoz, V.: On non-formal simply connected manifolds. Topology and its Appl., 135, 111–117 (2004). Halperin, S.: Lectures on minimal models. Mém. Soc. Math.France, 230, (1983). Halperin, S., Gómez-Tato, A., Tanré, D.: Rational homotopy theory for non-simply connected spaces. Trans. Amer. Soc., 352, 1493–1525 (2000). Lalonde, F., McDuff, D., Polterovich, L.: On the flux conjectures. In: Geometry, topology, and dynamics (Montreal, 1995). CRM Proc. Lecture Notes, 15, 69–85 (1998). Miller, T.J.: On the formality of (k − 1) connected compact manifolds of dimension less than or equal to (4k − 2).Illinois. J. Math., 23, 253–258 (1979). Neisendorfer, J., Miller, T.J.: Formal and coformal spaces. Illinois. J. Math., 22, 565–580 (1978). 12.Oprea, J.: The Samelson space of a fibration. Michigan Math. J., 34, 127–141 (1987). Tanré, D.: Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan. Lecture Notes in Math., 1025, Springer Verlag 1983). Tralle, A., Oprea, J.: Symplectic manifolds with no Kähler structure. Lecture Notes in Math., 1661, Springer Verlag (1997). | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1