Fisher information as a generalized measure of coherence in classical and quantum optics

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
The Optical Society Of America
Google Scholar
Research Projects
Organizational Units
Journal Issue
We show that metrological resolution in the detection of small phase shifts provides a suitable generalization of the degrees of coherence and polarization. Resolution is estimated via Fisher information. Besides the standard two-beam Gaussian case, this approach provides also good results for multiple field components and nonGaussian statistics. This works equally well in quantum and classical optics.
© 2012 OSA. This work has been supported by Project No. FIS2008-01267 of the Spanish Direccion General de Investigacion del Ministerio de Ciencia e Innovacion, and from Project QUITEMAD S2009-ESP-1594 of the Consejeria de Educacion de la Comunidad de Madrid. I thank the anonymous reviewers for one of the demonstrations in Appendix A and other useful suggestions.
1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995). 2. J. W. Goodman, Statistical Optics (John Wiley and Sons Inc., 1985). 3. B. Karczewski, “Degree of coherence of the electromagnetic field”, Phys. Lett. 5, 191–192 (1963). 4. H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence”, J. Opt. Soc. Am. A 19, 1563–1571 (2002). 5. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams”, Phys. Lett. A 312, 263–267 (2003). 6. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields” Opt. Express 11, 1137–1143 (2003). 7. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain”, Opt. Lett. 29, 328–330 (2004). 8. E. Wolf, “Comment on Complete electromagnetic coherence in the space-frequency domain”, Opt. Lett. 29, 1712–1712 (2004). 9. T. Setälä, J. Tervo, and A. T. Friberg, “Reply to comment on Complete electromagnetic coherence in the spacefrequency domain”, Opt. Lett. 29, 1713–1714 (2004). 10. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light”, Opt. Express 13, 6051–6060 (2005). 11. F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations”, Opt. Lett. 32, 588–590 (2007). 12. R. Martínez-Herrero and P.M. Mejías, “Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields”, Opt. Lett. 32, 1471–1473 (2007). 13. A. Luis, “Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices”, J. Opt. Soc. Am. A 24, 1063–1068 (2007). 14. A. Luis, “Maximum visibility in interferometers illuminated by vectorial waves”, Opt. Lett. 32, 2191–2193 (2007). 15. J. J. Gil, “Polarimetric characterization of light and media”, Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). 16. I. San José and J. J. Gil, “Invariant indices of polarimetric purity. Generalized indices of purity for nxn covariance matrices”, arXiv:0807.2171v1 [physics.optics]. 17. P. Réfrégier, “Mean-square coherent light”, Opt. Lett. 33, 1551–1553 (2008). 18. A. Luis, ”Quantum-classical correspondence for visibility, coherence, and relative phase for multidimensional systems”, Phys. Rev. A 78, 025802 (2008). 19. P. Réfrégier and A. Luis, “Irreversible effects of random unitary transformations on coherence properties of partially polarized electromagnetic fields”, J. Opt. Soc. Am. A 25, 2749–2757 (2008). 20. R. Martínez-Herrero and P.M. Mej´ıas, “Maximizing Youngs fringe visibility under unitary transformations for mean-square coherent light”, Opt. Express 17, 603–610 (2009). 21. A. Luis, “Coherence and visibility for vectorial light”, J. Opt. Soc. A 27, 1764–1769 (2010). 22. A. Luis, “Coherence versus interferometric resolution”, Phys. Rev. A 81, 065802 (2010). 23. A. Luis, “An overview of coherence and polarization properties for multicomponent electromagnetic waves”, in Advances in Information Optics and Photonics, International Commission for Optics, vol. VI, A. T. Friberg and R. D¨andliker, eds. (SPIE, 2009) pp. 171–188. 24. J. Tervo, T. Setälä, and A. T. Friberg, “Phase correlations and optical coherence”, Opt. Lett. 37, 151–153 (2012). 25. A. Luis, “Degree of polarization in quantum optics”, Phys. Rev. A 66, 013806 (2002). 26. A. Luis, “Degree of polarization of type-II unpolarized light”, Phys. Rev. A 75, 053806 (2007) 27. A. Luis, “Polarization distributions and degree of polarization for quantum Gaussian light fields”, Opt. Commun. 273, 173–181 (2007). 28. A. Luis, “Ensemble approach to coherence between two scalar harmonic light vibrations and the phase difference”, Phys. Rev. A 79, 053855 (2009). 29. A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves”, Opt. Lett. 29, 1653–1655 (2004). 30. P. Réfrégier, “Polarization degree of optical waves with non-Gaussian probability density functions: Kullback relative entropy-based approach”, Opt. Lett. 30, 1090–1092 (2005). 31. P. Réfrégier and F. Goudail, “Kullback relative entropy and characterization of partially polarized optical waves”, J. Opt. Soc. A 23, 671–678 (2006). 32. A. Rivas and A. Luis, “Characterization of quantum angular-momentum fluctuations via principal components”, Phys. Rev. A 77, 022105 (2008). 33. A. Luis, “Quantum-limited metrology with nonlinear detection schemes”, SPIE Reviews 1, 018006 (2010). 34. H. Cramér, Mathematical Methods of Statistics (Asia Publishing House, 1962). 35. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states”, Phys. Rev. Lett. 72, 3439–3443 (1994). 36. Exploratory Data Analysis Using Fisher Information, B. R. Frieden, ed. (Springer-Verlag, 2007). 37. B. R. Frieden, Physics from Fisher information: A Unification, (Cambridge U. Press, 1999). 38. A. Luis and L. L. Sánchez-Soto, “A quantum description of the beam splitter”, Quantum Semiclass. Opt. 7, 153–160 (1995). 39. T. M. Cover and J. A. Thomas, Elements of Information Theory, (Wiley Interscience, 1991). 40. A. D. C. Nascimento, R. J. Cintra, and A. C. Frery, “Hypothesis testing in speckled data with stochastic distances”, IEEE Trans. Geos. Remot. Sens. 48, 373–385 (2010). 41. F. Goudail, P. Réfrégier, and G. Delyon, “Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images”, J. Opt. Soc. Am. A 21, 1231–1240 (2004). 42. G. Björk, J. Soderholm, L. L. Sánchez-Soto, A. B. Klimov, I. Ghiu, P. Marian, and T. A. Marian, “Quantum degrees of polarization”, Opt. Commun. 283, 4440–4447 (2010). 43. P. Réfrégier, “Mutual information-based degrees of coherence of partially polarized light with Gaussian fluctuations”, Opt. Lett. 30, 3117–3119 (2005). 44. P. Réfrégier and A. Roueff, “Visibility interference fringes optimization on a single beam in the case of partially polarized and partially coherent light”, Opt. Lett. 32, 1366–1368 (2007). 45. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light”, Science 328, 879–881 (2010). 46. H.-W. Lee, “Theory and application of the quantum phase-space distribution functions”, Phys. Rep. 259, 147–211 (1995). 47. C. M. Caves, “Quantum-mechanical noise in an interferometer”, Phys. Rev. D 23, 1693–1708 (1981). 48. A. Rivas and A. Luis, “Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes”, Phys. Rev. Lett. 105, 010403 (2010). 49. Z. Y. Ou, “Fundamental quantum limit in precision phase measurement”, Phys. Rev. A 55, 2598–2609 (1997). 50. A. Luis and L. L. Sánchez-Soto, “Quantum phase difference, phase measurements and Stokes operators”, in Progress in Optics, vol. 41, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 421–482. 51. A. Luis, “Visibility for anharmonic fringes”, J. Phys. A: Math. Gen. 35, 8805–8815 (2002). 52. A. Sehat, J. Söderholm, G. Björk, P. Espinoza, A. B. Klimov, and L. L. Sánchez-Soto”,Quantum polarization properties of two-mode energy eigenstates”, Phys. Rev. A 71, 033818 (2005). 53. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian-Wigner distributions in quantum mechanics and optics”, Phys. Rev. A 36, 3868–3880 (1987). 54. A. Luis, “Quantum mechanics as a geometric phase: phase-space interferometers”, J. Phys. A 34, 7677–7684 (2001). 55. A. Luis, “Classical mechanics and the propagation of the discontinuities of the quantum wave function”, Phys. Rev. A 67, 024102 (2003). 56. B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, "Nonquantum entanglement resolves a basic issue in polarization optics”, Phys. Rev. Lett. 104, 023901 (2010).