Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Providing reliability in recommender systems through Bernoulli Matrix Factorization

dc.contributor.authorOrtega, Fernando
dc.contributor.authorLara Cabrera, Raúl
dc.contributor.authorGonzález Prieto, José Ángel
dc.contributor.authorBobadilla, Jesús
dc.date.accessioned2024-02-08T16:55:23Z
dc.date.available2024-02-08T16:55:23Z
dc.date.issued2021
dc.description.abstractBeyond accuracy, quality measures are gaining importance in modern recommender systems, with reliability being one of the most important indicators in the context of collaborative filtering. This paper proposes Bernoulli Matrix Factorization (BeMF), which is a matrix factorization model, to provide both prediction values and reliability values. BeMF is a very innovative approach from several perspectives: a) it acts on model-based collaborative filtering rather than on memory-based filtering, b) it does not use external methods or extended architectures, such as existing solutions, to provide reliability, c) it is based on a classification-based model instead of traditional regression-based models, and d) matrix factorization formalism is supported by the Bernoulli distribution to exploit the binary nature of the designed classification model. The experimental results show that the more reliable a prediction is, the less liable it is to be wrong: recommendation quality improves after the most reliable predictions are selected. State-of-the-art quality measures for reliability have been tested, which shows that BeMF outperforms previous baseline methods and models.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.statuspub
dc.identifier.citationF. Ortega, R. Lara-Cabrera, Á. González-Prieto, J. Bobadilla, Providing reliability in recommender systems through Bernoulli Matrix Factorization, Information Sciences 553 (2021) 110–128. https://doi.org/10.1016/j.ins.2020.12.001.
dc.identifier.doi10.1016/j.ins.2020.12.001
dc.identifier.issn0020-0255
dc.identifier.officialurlhttps://doi.org/10.1016/j.ins.2020.12.001
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0020025520311622
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100568
dc.journal.titleInformation Sciences
dc.language.isoeng
dc.page.final128
dc.page.initial110
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106493RB-I00/ES/AUMENTO DE LA CALIDAD Y DE LA EQUIDAD, A GRUPOS MINORITARIOS, EN LAS RECOMENDACIONES OBTENIDAS MEDIANTE FILTRADO COLABORATIVO BASADO EN TECNICAS DE DEEP LEARNING/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85727-C4-3-P/ES/NUEVOS MODELOS DE COMPUTO BIOINSPIRADO PARA ENTORNOS MASIVAMENTE COMPLEJOS/
dc.rights.accessRightsopen access
dc.subject.keywordRecommender systems
dc.subject.keywordCollaborative filtering
dc.subject.keywordMatrix factorization
dc.subject.keywordReliability
dc.subject.keywordClassification model
dc.subject.keywordBernoulli distribution
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmEstadística aplicada
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1209.03 Análisis de Datos
dc.titleProviding reliability in recommender systems through Bernoulli Matrix Factorizationen
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number553
dspace.entity.typePublication
relation.isAuthorOfPublicationc3011bfd-5025-4e49-8f0e-e16ea76da35c
relation.isAuthorOfPublication.latestForDiscoveryc3011bfd-5025-4e49-8f0e-e16ea76da35c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Providing_reliability.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format

Collections