The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic
dc.contributor.author | Cembranos, Pilar | |
dc.contributor.author | Mendoza Casas, José | |
dc.date.accessioned | 2023-06-20T00:10:14Z | |
dc.date.available | 2023-06-20T00:10:14Z | |
dc.date.issued | 2010-02 | |
dc.description.abstract | The statement of the title is proved. It follows from this that the spaces c(0)(l(p)), l(p)(c(0)) and l(p)(l(q)), 1 <= p, q <= +infinity, make a family of mutually non-isomorphic Banach spaces. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14897 | |
dc.identifier.doi | 10.1016/j.jmaa.2010.01.057 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022247X1000096X | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42120 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Mathematical Analysis and Applications | |
dc.language.iso | eng | |
dc.page.final | 463 | |
dc.page.initial | 461 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | Banach Spaces | |
dc.subject.keyword | Isomorphism | |
dc.subject.keyword | Sequence Spaces | |
dc.subject.keyword | Mathematics | |
dc.subject.keyword | Applied | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic | |
dc.type | journal article | |
dc.volume.number | 367 | |
dcterms.references | 1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer, New York, 2006. [2] C. Bessaga, A. Pełczyn´ ski, Some remarks on conjugate spaces containing subspaces isomorphic to the space c0, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958) 249–250. [3] P. Cembranos, J. Mendoza, On the mutually non-isomorphic p(q) spaces, in press. [4] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, 1984. [5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb., vol. 92, Springer-Verlag, 1977. [6] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978; first ed., North-Holland Publishing, Amsterdam/New York, 1978; second ed., Johann Ambrosius Barth, Heidelberg, 1995. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3fdf00ed-ed02-482c-a736-bb87c2753a89 | |
relation.isAuthorOfPublication.latestForDiscovery | 3fdf00ed-ed02-482c-a736-bb87c2753a89 |
Download
Original bundle
1 - 1 of 1