Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic

dc.contributor.authorCembranos, Pilar
dc.contributor.authorMendoza Casas, José
dc.date.accessioned2023-06-20T00:10:14Z
dc.date.available2023-06-20T00:10:14Z
dc.date.issued2010-02
dc.description.abstractThe statement of the title is proved. It follows from this that the spaces c(0)(l(p)), l(p)(c(0)) and l(p)(l(q)), 1 <= p, q <= +infinity, make a family of mutually non-isomorphic Banach spaces.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14897
dc.identifier.doi10.1016/j.jmaa.2010.01.057
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X1000096X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42120
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final463
dc.page.initial461
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu519.6
dc.subject.keywordBanach Spaces
dc.subject.keywordIsomorphism
dc.subject.keywordSequence Spaces
dc.subject.keywordMathematics
dc.subject.keywordApplied
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleThe Banach Spaces L(Infinity)(C(0)) And C(0)(L(Infinity)) Are Not Isomorphic
dc.typejournal article
dc.volume.number367
dcterms.references1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer, New York, 2006. [2] C. Bessaga, A. Pełczyn´ ski, Some remarks on conjugate spaces containing subspaces isomorphic to the space c0, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958) 249–250. [3] P. Cembranos, J. Mendoza, On the mutually non-isomorphic p(q) spaces, in press. [4] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer-Verlag, 1984. [5] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb., vol. 92, Springer-Verlag, 1977. [6] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978; first ed., North-Holland Publishing, Amsterdam/New York, 1978; second ed., Johann Ambrosius Barth, Heidelberg, 1995.
dspace.entity.typePublication
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery3fdf00ed-ed02-482c-a736-bb87c2753a89

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02.pdf
Size:
114.91 KB
Format:
Adobe Portable Document Format

Collections