Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Frontiers and symmetries of dynamical systems

dc.contributor.authorDíaz-Cano Ocaña, Antonio
dc.contributor.authorGonzalez Gascón, F.
dc.date.accessioned2023-06-20T00:10:42Z
dc.date.available2023-06-20T00:10:42Z
dc.date.issued2010
dc.description.abstractThe frontiers of boundedness F(b) of the orbits of dynamical systems X defined on R(n) are studied. When X is completely integrable some topological properties of F(b) are found and, in certain cases, F(b) is localized with the help of symmetries of X. Several examples in dimensions 2 and 3 are provided. In case the number of known first integrals of the vector field X is less than n - 1, an interesting connection of F(b) with the frontier of boundedness of the level-sets of the first integrals of X is proved. This result also applies to Hamiltonian systems.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipGAAR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14984
dc.identifier.doi10.1080/14689361003761959
dc.identifier.issn1468-9367
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/14689361003761959
dc.identifier.relatedurlhttp://www.tandfonline.com/loi/cdss20
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42136
dc.issue.number4
dc.journal.titleDynamical Systems: An International Journal
dc.language.isoeng
dc.page.final518
dc.page.initial501
dc.publisherTaylor & Francis
dc.relation.projectIDMTM2008-00272
dc.relation.projectIDGrupos UCM 910444.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordDynamical systems
dc.subject.keywordFrontier
dc.subject.keywordFirst integral
dc.subject.keywordSymmetries
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleFrontiers and symmetries of dynamical systems
dc.typejournal article
dc.volume.number25
dcterms.referencesL.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Mechanics, Vol. 1, Pergamon Press, Oxford, New York, Toronto, Ontario, 1976. A. Díaz-Cano, F. Gonza´ lez-Gasco´ n, and D. Peralta-Salas, On scattering trajectories of dynamical systems, J. Math. Phys. 47 (2006), pp. 062703-1–062703-10. F. Dumortier, Singularities of vector fields on the plane, J. Diff. Eqns. 23 (1977), pp. 53–106. L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, Vol. 7, Springer-Verlag, New York, 1991. A. Bruno, Local Methods in Non-linear Differential Equations, Springer-Verlag, New York, 1989. H. Goldstein, Classical Mechanics, Addison-Wesley Series in Physics, Addison-Wesley, Cambridge, MA, 1980. C. Ehresmann, Sur la the´orie des variétés feuilletées, Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. Appl. 10 (1951), pp. 64–82. A. Kosinski, Differential Manifolds, Pure and Applied Mathematics, Vol. 138, Academic Press, Boston, 1993. J. Sivardie` re, A simple mechanical model exhibiting a spontaneous symmetry breaking, Amer. J. Phys. 51 (1983), pp. 1016–1018. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1987. L. Tisza, On the general theory of phase transitions, in Phase Transitions in Solids (Symposium at Cornell University, August, 1948), R. Smoluchowski, J.E. Mayer, and W.A. Wevl, eds., Wiley, New York, 1951, pp. 1–37. G. Fletcher, A mechanical analog of first- and second-order phase transitions, Amer. J. Phys. 65 (1997), pp. 74–81. M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces, Springer, New York, 1988. A.F. Costa, F. González-Gascón, and A. González-López, On codimension one submersions of euclidean spaces, Invent. Math. 93 (1988), pp. 545–555. A. Borel and J.P. Serre, Impossibilité de fibrer un espace euclidien par des fibres compactes, C. R. Acad. Sci. Paris 230 (1950), pp. 2258–2260. Z. Jelonek, Geometry of real polynomial mappings, Math. Z. 239 (2002), pp. 321–333. H.O. Peitgen and P.H. Richter, The Beauty of Fractals: Images of Complex Dynamical Systems, Springer, New York, 1986. S. Nikiel and A. Goinski, Generation of volumetric escape time fractals, Comput. Grafics 27 (2003), pp. 977–982. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986. R. Hermann, Differential Geometry and the Calculus of Variations, Math. Sci. Press, Massachusetts, 1977. J. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York, London, Sydney, 1975. L. Markus, Parallel dynamical systems, Topology 8 (1969), pp. 47–57. V. Nemytskii and V. Stepanov, Theory of Differential Equations, Princeton University Press, Princeton, 1960. F. Gonza´ lez-Gasco´ n and A. Gonza´ lez-Lo´ pez, Another method for the obtention of first integrals of dynamical systems, Lett. Nuovo Cimento 39 (1984), pp. 315–318. G.F. Torres del Castillo and I. Rubalcava Garcı´a, Hamiltonians and lagrangians of nonautonomous one-dimensional mechanical systems, Rev. Mexicana Fís. 52 (2006), pp. 429–432. S. Smale, Topology and mechanics I, Invent. Math. 10 (1970), pp. 305–331. S. Smale, Topology and mechanics II. The planar n-body problem, Invent. Math. 11 (1970), pp. 45–64. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer- Verlag, New York, Berlin, 1983. V.I. Arnold, Dynamical Systems III, Springer-Verlag, Berlin, 1993. J. Patera and P. Winternitz, Invariant trilinear couplings involving both SU(2) and SU(1, 1) states, J. Math. Phys. 14 (1973), pp. 1977–1983. C. Boyer, E. Kalnins, and W. Miller, Lie theory and separation of variables VI. The equation iUtþD2U¼0, J. Math. Phys. 16 (1975), pp. 499–511
dspace.entity.typePublication
relation.isAuthorOfPublication134ad262-ecde-4097-bca7-ddaead91ce52
relation.isAuthorOfPublication.latestForDiscovery134ad262-ecde-4097-bca7-ddaead91ce52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
03.pdf
Size:
367.02 KB
Format:
Adobe Portable Document Format

Collections