Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Entropy decay for Davies semigroups of a one dimensional quantum lattice

Loading...
Thumbnail Image

Official URL

Full text at PDC

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Given a finite-range, translation-invariant commuting system Hamiltonians on a spin chain, we show that the Davies semigroup describing the reduced dynamics resulting from the joint Hamiltonian evolution of a spin chain weakly coupled to a large heat bath thermalizes rapidly at any temperature. More precisely, we prove that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain. Our theorem extends a seminal result of Holley and Stroock [40] to the quantum setting, up to a logarithmic overhead, as well as provides an exponential improvement over the non-closure of the gap proved by Brandao and Kastoryano [43]. This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems. Our proof relies upon a recently derived strong decay of correlations for Gibbs states of one dimensional, translation-invariant local Hamiltonians, and tools from the theory of operator spaces.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections