Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Artificial Intelligence Techniques for Automatic Detection of Peri‑implant Marginal Bone Remodeling in Intraoral Radiographs

dc.contributor.authorVera González, Vicente
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorGómez Silva, María José
dc.contributor.authorAliaga Vera, Ignacio Joaquín
dc.contributor.authorPedrera Canal, María
dc.contributor.authorVera, María
dc.contributor.authorLópez-González, Clara Isabel
dc.contributor.authorGascó, Esther
dc.date.accessioned2023-07-24T11:17:49Z
dc.date.available2023-07-24T11:17:49Z
dc.date.issued2023-07-01
dc.description.abstractPeri-implantitis can cause marginal bone remodeling around implants. The aim is to develop an automatic image processing approach based on two artificial intelligence (AI) techniques in intraoral (periapical and bitewing) radiographs to assist dentists in determining bone loss. The first is a deep learning (DL) object-detector (YOLOv3) to roughly identify (no exact localization is required) two objects: prosthesis (crown) and implant (screw). The second is an image understanding-based (IU) process to fine-tune lines on screw edges and to identify significant points (intensity bone changes, intersections between screw and crown). Distances between these points are used to compute bone loss. A total of 2920 radiographs were used for training (50%) and testing (50%) the DL process. The mAP@0.5 metric is used for performance evaluation of DL considering periapical/bitewing and screws/crowns in upper and lower jaws, with scores ranging from 0.537 to 0.898 (sufficient because DL only needs an approximation). The IU performance is assessed with 50% of the testing radiographs through the t test statistical method, obtaining p values of 0.0106 (line fitting) and 0.0213 (significant point detection). The IU performance is satisfactory, as these values are in accordance with the statistical average/standard deviation in pixels for line fitting (2.75/1.01) and for significant point detection (2.63/1.28) according to the expert criteria of dentists, who establish the ground-truth lines and significant points. In conclusion, AI methods have good prospects for automatic bone loss detection in intraoral radiographs to assist dental specialists in diagnosing peri-implantitis.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationVera, M., Gómez-Silva, M.J., Vera, V. et al. Artificial Intelligence Techniques for Automatic Detection of Peri-implant Marginal Bone Remodeling in Intraoral Radiographs. J Digit Imaging (2023). https://doi.org/10.1007/s10278-023-00880-3
dc.identifier.doi10.1007/s10278-023-00880-3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/87321
dc.journal.titleJournal of Digital Imaging
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.publisherSpringer
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordDental X-ray
dc.subject.keywordImage processing
dc.subject.keywordComputer vision
dc.subject.keywordArtificial intelligence
dc.subject.keywordArtificial intelligence
dc.subject.keywordBone resorption
dc.subject.keywordPeri-implantitis
dc.subject.ucmCiencias Biomédicas
dc.subject.ucmCiencias
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco32 Ciencias Médicas
dc.titleArtificial Intelligence Techniques for Automatic Detection of Peri‑implant Marginal Bone Remodeling in Intraoral Radiographs
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication18bff6fb-efbe-4391-b840-7907cc7112bb
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication779a7137-78a8-46a7-81e0-58b8bd5f1748
relation.isAuthorOfPublication89f428e0-a633-4977-988c-dc7649d41e34
relation.isAuthorOfPublication01158231-ea3f-4d8e-b2d0-d12944432d9b
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication.latestForDiscovery18bff6fb-efbe-4391-b840-7907cc7112bb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
105 Journal of Digital Imaging periimplantitis.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format

Collections