Nonequilibrium Casimir-like Forces in Liquid Mixtures

dc.contributor.authorKirkpatrick, T. R.
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorSengers, J. V.
dc.date.accessioned2023-06-18T06:46:30Z
dc.date.available2023-06-18T06:46:30Z
dc.date.issued2015-07-14
dc.description© 2015 American Physical Society. The authors acknowledge valuable discussions with Jeremy N. Munday. The research at the University of Maryland was supported by the U.S. National Science Foundation under Grant No. DMR-1401449.
dc.description.abstractIn this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the walls. The physical reason is that the temperature gradient induces large concentration fluctuations through the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force is proportional to the square of the Soret coefficient and is related to the concentration dependence of the heat and volume of mixing.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNational Science Foundation (NSF), EE.UU.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32957
dc.identifier.doi10.1103/PhysRevLett.115.035901
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.115.035901
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24132
dc.issue.number3
dc.journal.titlePhysical review letters
dc.language.isoeng
dc.page.final035901_5
dc.page.initial035901_1
dc.publisherAmerican Physical Society
dc.relation.projectIDDMR-1401449
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordFluctuation-induced forces
dc.subject.keywordAsymptotic time behavior
dc.subject.keywordDiffusion-coefficient
dc.subject.keywordRayleigh-scattering
dc.subject.keywordGiant fluctuations
dc.subject.keywordLight-scattering
dc.subject.keywordBinary-mixture
dc.subject.keywordEquilibrium
dc.subject.keywordFluid
dc.subject.keywordRenormalization
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleNonequilibrium Casimir-like Forces in Liquid Mixtures
dc.typejournal article
dc.volume.number115
dcterms.references[1] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). [2] H. B. G. Casimir, Proc. K. Ned. Akad. Wet.Ser. B 51, 793 (1948). [3] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Rev. Mod. Phys. 81, 1827 (2009). [4] M. E. Fisher and P.-G. de Gennes, C.R. Seances Acad. Sci., Ser. B 287, 207 (1978). [5] M. Krech, J. Phys. Condens. Matter 11, R391 (1999). [6] A. Gambassi, A. Maciolek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143 (2009). [7] A. Gambassi, C. Hertlein, L. Helden, S. Dietrich, and C. Bechinger, Europhysics News 40, 18 (2009). [8] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [9] R. Schmitmann and R. K. P. Zia, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, New York, 1995), Vol. 17. [10] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [11] B. Derrida, J. Stat. Mech. (2007) P07023. [12] W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica (Amsterdam) 204A, 399 (1994). [13] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000). [14] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [15] M. Tröndle, L. Hamau, and S. Dietrich, J. Chem. Phys. 129, 124716 (2008). [16] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. E 89, 022145 (2014). [17] K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970). [18] D. Bedeaux and P. Mazur, Physica (Amsterdam) 73, 431 (1974). [19] P. Mazur and D. Bedeaux, Physica (Amsterdam) 75, 79 (1974). [20] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). [21] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 23 (1976). [22] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16, 732 (1977). [23] P. Kovtun and L. G. Yaffe, Phys. Rev. D 68, 025007 (2003). [24] S. Caron-Huot and O. Saremi, J. High Energy Phys. 11 (2010) 013. [25] W. W. Wood, J. Stat. Phys. 57, 675 (1989). [26] M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). [27] W. B. Li, Ph.D. thesis, University of Maryland, 1996. [28] B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). [29] J. V. Sengers and J. M. Ortiz de Zárate, Rev. Mex. Fis., Suppl. 1, 48, 14 (2002). [30] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover edition. (Oxford University Press, Oxford, 1961). [31] J. M. Ortiz de Zárate, T. R. Kirkpatrick, and J. V. Sengers, arXiv:1505.01355v1. [32] P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). [33] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 110, 235902 (2013). [34] J. L. Parker, Langmuir 8, 551 (1992). [35] G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002). [36] A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). [37] A. Aminov, Y. Kafri, and M. Kardar, Phys. Rev. Lett. 114, 230602 (2015). [38] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). [39] S. Hartmann, G. Wittko, F. Schock, W. Grosz, F. Lindner, W. Köhler, and K. I. Morozov, J. Chem. Phys. 141, 134503 (2014). [40] K. J. Zhang, M. E. Briggs, R. W. Gammon, and J. V. Sengers, J. Chem. Phys. 104, 6881 (1996). [41] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [42] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [43] D. Brogioli, A. Vailati, and M. Giglio, J. Phys. Condens. Matter 12, A39 (2000). [44] A. Donev, T. G. Fai, and E. Vanden-Eijnden, J. Stat. Mech. (2014) P04004.
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication.latestForDiscoveryd2b809b1-3ba2-407e-add2-8b8251e306ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortiz39 LIBRE.pdf
Size:
142.92 KB
Format:
Adobe Portable Document Format

Collections