Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Interval neutrosophic sets and topology.

dc.contributor.authorGallego Lupiáñez, Francisco
dc.date.accessioned2023-06-20T09:34:25Z
dc.date.available2023-06-20T09:34:25Z
dc.date.issued2009
dc.description.abstractPurpose - In 2005, Smarandache generalized the Atanassov's intuitionistic fuzzy sets (IFSs) to neutrosophic sets (NS), and other researchers introduced the notion of interval neutrosophic set (INSs), which is an instance of NS, and studied various properties. The notion of neutrosophic topology on the non-standard interval is also due to Smarandache. The purpose of this paper is to study relations between INSs and topology. Design/methodology/approach - The paper investigates the possible relations between INSs and topology. Findings - Relations on INSs and neutrosophic topology. Research limitations/implications - Clearly, the paper is confined to IFSs and NSs. Practical implications - The main applications are in the mathematical field. Originality/value - The paper shows original results on fuzzy sets and topology.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15275
dc.identifier.doi10.1108/03684920910944849
dc.identifier.issn0368-492X
dc.identifier.officialurlhttp://fs.gallup.unm.edu/INeutrosophicSet-Topology.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49938
dc.issue.number3/4
dc.journal.titleKybernetes
dc.page.final624
dc.page.initial621
dc.publisherEmerald Group Publishing Limited
dc.rights.accessRightsmetadata only access
dc.subject.cdu519.7-76
dc.subject.cdu510.64
dc.subject.cdu515.1
dc.subject.keywordCybernetics
dc.subject.keywordFuzzy logic
dc.subject.keywordSet theory
dc.subject.keywordTopology
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.ucmCibernética matemática
dc.subject.ucmTopología
dc.subject.unesco1102.14 Lógica Simbólica
dc.subject.unesco1207.03 Cibernética
dc.subject.unesco1210 Topología
dc.titleInterval neutrosophic sets and topology.
dc.typejournal article
dc.volume.number38
dcterms.referencesK.T. Atanassov, Intuitionistic fuzzy sets, paper presented at the VII ITKR’s Session, Sofia (June 1983). K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20,1986, pp. 87-96. K.T. Atanassov, Review and new results on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, Sofia(1988). S.Bayhan and D.C¸ oker, On T1 and T2 separation axioms in intuitionistic fuzzy topological spaces , J. Fuzzy Math. 11, 2003, pp. 581-592. D.C¸ oker, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4, 1996, pp. 749-764. D.C¸ oker, An introduction to intuitionistic fuzzy topologial spaces, Fuzzy Sets and Systems,88,1997, pp. 81-89. D.C¸ oker and A.H. Es¸, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3, 1995, pp. 899-909. A.H.Es¸ and D.C¸ oker, More on fuzzy compactness in intuitionistic fuzzy topological spaces, Notes IFS, 2 , no1, 1996, pp. 4-10. H.G¨urc¸ay, D.C¸ oker, and A.H.Es¸, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5, 1997, pp. 365-378. J.H.Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czech. Math. J. 53 (128), 2003, pp.793-803. K.Hur, J.H.Kim, and J.H.Ryou, Intuitionistic fuzzy topologial spaces”, J. Korea Soc. Math. Educ., Ser B, 11, 2004, pp. 243-265. S.J.Lee and E.P.Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math.Soc., 37, 2000, pp. 63-76. F.G.Lupi´a˜nez, Hausdorffness in intuitionistic fuzzy topological spaces, J. Fuzzy Math.12, 2004, pp. 521-525. F.G.Lupi´a˜nez, Separation in intuitionistic fuzzy topological spaces, Intern. J. Pure Appl. Math. 17, 2004, pp. 29-34. F.G.Lupi´a˜nez, Nets and filters in intuitionistic fuzzy topological spaces, Inform. Sci. 176, 2006 , pp.2396-2404. F.G.Lupi´a˜nez, On intuitionistic fuzzy topological spaces, Kybernetes, 35, 2006, pp. 743-747. F.G.Lupi´a˜nez, Covering properties in intuitionistic fuzzy topological spaces, Kybernetes, 36, 2007, pp. 749-753. F.G.Lupi´a˜nez, On Neutrosophic Topology, Kybernetes (to appear)37, 2008, 797-800. A.Robinson, Non-standard Analysis, Princeton University Press, Princeton, NJ.1996 F.Smarandache, A unifying field in Logics: Neutrosophic Logic, Multiple-Valued Logic, 8, 2002, pp. 385-438. F.Smarandache, Definition of Neutrosophic Logic. A generalization of the intuitionistic fuzzy Logic, Proc. 3rd Conf. Eur. Soc. Fuzzy Logic Tech. [EUSFLAT, 2003], pp.141-146. F.Smarandache, Neutrosophic set. A generalization of the intuitionistic fuzzy set, Intern. J. Pure Appl. Math. 24, 2005, pp. 287-297. N.Turanh and D.C¸ oker, Fuzzy connectedness in intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 116, 2000, pp. 369-375. H.Wang, F.Smarandache, Y.-Q.Zhang, and R.Sunderraman, Interval neutrosophic sets and Logic: Theory and Applications in Computing, Hexis, Phoenix, AZ.2005 Proceedings of the 13th WSEAS International Conference on APPLIED MATHEMATICS (MATH'08)
dspace.entity.typePublication
relation.isAuthorOfPublicationd690c2bd-762b-4bd2-a8ba-11c504ad15d5
relation.isAuthorOfPublication.latestForDiscoveryd690c2bd-762b-4bd2-a8ba-11c504ad15d5

Download

Collections