Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Superpotentials, quantum parameter space and phase transitions in N=1 supersymmetric gauge theories

dc.contributor.authorÁlvarez Galindo, Gabriel
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-19T14:57:18Z
dc.date.available2023-06-19T14:57:18Z
dc.date.issued2013-03
dc.description©Springer. The financial support of the Universidad Complutense under project GR58/08-910556 and the Ministerio de Ciencia e Innovación under projects FIS2008-00200 and FIS2011-22566 are gratefully acknowledged.
dc.description.abstractWe study the superpotentials, quantum parameter space and phase transitions that arise in the study of large N dualities between N = 1 SUSY U(N) gauge theories and string models on local Calabi-Yau manifolds. The main tool of our analysis is a notion of spectral curve characterized by a set of complex partial ’t Hooft parameters and cuts given by projections on the spectral curve of minimal supersymmetric cycles of the underlying Calabi-Yau manifold. We introduce a prepotential functional via a variational problem which determines the complex density as an extremal constrained by the period conditions. This prepotential is shown to satisfy the special geometry relations of the spectral curve. We give a system of equations for the branch points of the spectral curves and determine the appropriate branch cuts as Stokes lines of a suitable set of polynomials. As an application, we use a combination of analytical and numerical methods to study the cubic model, determine the analytic condition satisfied by critical one-cut spectral curves, and characterize the transition curves between the one-cut and two-cut phases both in the space of spectral curves and in the quantum parameter space.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34171
dc.identifier.doi10.1007/JHEP03(2013)170
dc.identifier.issn1029-8479
dc.identifier.officialurlhttp://dx.doi.org/10.1007/JHEP03(2013)170
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.relatedurlhttp://arxiv.org/abs/1301.5982
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34938
dc.issue.number3
dc.journal.titleJournal of high energy physics
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDGR58/08-910556
dc.relation.projectIDFIS2008-00200
dc.relation.projectIDFIS2011-22566
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordMatrix models
dc.subject.keywordYang-mills
dc.subject.keywordEquations
dc.subject.keywordDuality
dc.subject.keywordStrings
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleSuperpotentials, quantum parameter space and phase transitions in N=1 supersymmetric gauge theories
dc.typejournal article
dcterms.references[1] F. Cachazo, K. Intriligator, and C. Vafa, A large N duality via a geometric transition, Nuc. Phys. B 603 (2001) 3. [2] R. Dijkgraaf and C. Vafa, Matrix models, topological strings, and supersymmetric gauge theories, Nuc. Phys. B 644 (2002) 3. [3] R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nuc. Phys. B 644 (2002) 21. [4] J. J. Heckman, J. Seo, and C. Vafa, Phase structure of a brane/anti-brane system at large N, J. High Energy Phys. 07 (2007) 073. [5] A. Bilal and S. Metzger, Special geometry of local Calabi-Yau manifolds and superpotentials from holomorphic matrix models, J. High Energy Phys. 08 (2005) 097. [6] F. Ferrari, Quantum parameter space in super Yang-Mills. II, Phy. Lett. B 557 (2003) 290. [7] F. Cachazo, N. Seiberg, and E. Witten, Phases of N = 1 supersymmetric gauge theories and matrices, J. High Energy Phys. 03 (2003) 042. [8] J. J. Heckman and C. Vafa, Geometrically induced phase transitions at large N = 1, J. High Energy Phys. 04 (2008) 052. [9] M. Mariño, S. Pasquetti, and P. Putrov, Large N duality beyond the genus expansion, J. High Energy Phys. 10 (2010) 074. [10] G. Álvarez, L. Martínez Alonso, and E. Medina, Phase transitions in multi-cut matrix models and matched solutions of Whitham hierarchies, J. Stat. Mech. Theory Exp. (2010) 03023. [11] K. Becker, E. Becker, and A. Strominger, Fivebranes, membranes and non-perturbative string theory, Nuc. Phys. B 456 (1995) 130. [12] A. Klemm, W. Lerche, P. Mayr, C.Vafa, and N. Warner, Self-dual strings and N = 2 supersymmetric field theory, Nuc. Phys. B 477 (1996) 746. [13] A. D. Shapere and C. Vafa, “BPS structure of Argyres-Douglas superconformal theories.” arXiv:hep-th/9910182v2. [14] S. Gukov, C. Vafa, and E. Witten, CFT’s from Calabi-Yau four-folds, Nuc. Phys. B 584 (2000) 69. [15] S. Gukov, C. Vafa, and E. Witten, Erratum, Nuc. Phys. B 608 (2001) 477. [16] G. Felder and R. Riser, Holomorphic matrix integrals, Nuc. Phys. B 691 (2004) 251. [17] F. Ferrari, On exact superpotentials in confining vacua, Nuc. Phys. B 648 (2003) 161. [18] F. Ferrari, Quantum parameter space and double scaling limits in N = 1 super Yang-Mills theory, Phys. Rev. D 67 (2003) 085013. [19] Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient. North-Holland, 1975. [20] M. Bertola, Boutroux curves with external field: equilibrium measures without a variational problem, Analysis and Math. Phys. 1 (2011) 167. [21] D. Gross and E. Witten, Possible third-order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446. [22] P. Bleher and B. Eynard, Double scaling limit in random matrix models and a nonlinear hierarchy of differential equations. Random matrix theory., J. Phys. A: Math. Gen. 36 (2003) 3085. [23] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35. [24] B. Eynard, Universal distribution of random matrix eigenvalues near the birth of a cut, J. Stat. Mech. Theory Exp. (2006) P07005. [25] N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nuc. Phys. B 426 (1994) 19. [26] N. Caporaso, L. Griguolo, M. Mariño, S. Pasquetti, and D. Seminara, Phase transitions, double-scaling limit and topological strings, Phys. Rev. D 75 (2007) 046004. [27] A. Klemm, M. Mariño, and M. Rauch, Direct integration and non-perturbative effects in matrix models, J. High Energy Phys. 10 (2010) 004. [28] F. R. Tian, The Whitham type equations and linear overdetermined systems of Euler- Poisson-Darboux type, Duke. Math. J. 74 (1994) 203.
dspace.entity.typePublication
relation.isAuthorOfPublication93e2c5ce-9576-43ad-99af-1f18cb650636
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery93e2c5ce-9576-43ad-99af-1f18cb650636

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso04preprint.pdf
Size:
7.31 MB
Format:
Adobe Portable Document Format

Collections