Orderings On Real Surfaces

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.contributor.authorAlonso García, María Emilia
dc.contributor.authorRuiz Pérez, Javier
dc.date.accessioned2023-06-21T02:01:47Z
dc.date.available2023-06-21T02:01:47Z
dc.date.issued1984
dc.description.abstractAfter describing explicitly all total orderings in the ring R[[x, y]], we prove that each ordering in the quotient field of the ring of germs of real analytic functions at an irreducible point O of a real analytic surface X is defined by a half-branch of the germ at O of some curve on X, which is analytic off the origin. Then follows an analogous result for real algebraic surfaces.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15506
dc.identifier.issn0764-4442
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64631
dc.issue.number1
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.page.final19
dc.page.initial17
dc.publisherElsevier
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.71
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOrderings On Real Surfaces
dc.typejournal article
dc.volume.number298
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication784665c6-b0a6-479e-ac77-a2735116b521
relation.isAuthorOfPublicationb0242abd-d40a-4c55-83e1-c44f92c5cc1e
relation.isAuthorOfPublication.latestForDiscovery784665c6-b0a6-479e-ac77-a2735116b521

Download

Collections