Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the simplification of the coefficients of a parametrization

dc.contributor.authorAndradas Heranz, Carlos
dc.contributor.authorRecio, Tomas
dc.contributor.authorTabera, Luis F.
dc.contributor.authorSendra, J. Rafael
dc.date.accessioned2023-06-20T00:08:45Z
dc.date.available2023-06-20T00:08:45Z
dc.date.issued2009
dc.description.abstractLet K subset of R be a computable field. We present an algorithm to decide whether a proper rational parametrization of a ruled surface, with coefficients in K((i), can be properly reparametrized over a real (i.e. embedded in R) finite field extension of K. Moreover, in the affirmative case, the algorithm provides a proper parametrization with coefficients in a real extension of K of degree at most 2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educacion y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14730
dc.identifier.doi10.1016/j.jsc.2008.09.001
dc.identifier.issn0747-7171
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0747717108001338
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42076
dc.issue.number2
dc.journal.titleJournal of Symbolic Computation
dc.language.isoeng
dc.page.final210
dc.page.initial192
dc.publisherElsevier
dc.relation.projectIDMTM2005-02865
dc.relation.projectIDMTM2005-08690-CO2-01/02
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordParametric varieties
dc.subject.keywordField of definition
dc.subject.keywordSimplification of parametrizations
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the simplification of the coefficients of a parametrization
dc.typejournal article
dc.volume.number44
dcterms.referencesAlonso, C., 1994. Desarrollo, análisis e implementación de algoritmos para la manipulación de variedades paraméricas. Ph.D. Thesis. Universidad de Cantabria. Alonso, C., Gutiérrez, J., Recio, T., 1996. A rational function decomposition algorithm using near-separated polynomials. Extracta Math. 11 (3), 475479. Andradas, C., Recio, T., Sendra, J.R., 1997. A relatively optimal rational space curve reparametrization algorithm through canonical divisors. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI). ACM, New York, pp. 349355 (electronic). Andradas, C., Recio, T., Sendra, J.R., 1999. Base field restriction techniques for parametric curves. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC). ACM, New York, pp. 1722 (electronic). Cox, D., Little, J., O'Shea, D., 1997. Ideals, varieties, and algorithms. In: Undergraduate Texts in Mathematics, 2nd ed. Springer- Verlag, New York. Pérez-Díaz, S., Schicho, J., Sendra, J.R., 2002. Properness and inversion of rational parametrizations of surfaces. Appl. Algebra Engrg. Comm. Comput. 13 (1), 2951. Pérez-Díaz, S., Sendra, J.R., 2004. Computation of the degree of rational surface parametrizations. J. Pure Appl. Algebra 193 (13), 99121. Recio, T., Sendra, J.R., 1997a. Real reparametrizations of real curves. J. Symbolic Comput. 23 (23), 241254. Recio, T., Sendra, J.R., 1997b. A really elementary proof of real Lüroth's theorem. Rev. Mat. Univ. Complut. Madrid 10, 283290. (Special Issue, suppl.). Recio, T., Sendra, J.R., Tabera, L.F., Villarino, C., 2007. Generalizing circles over algebraic extensions. arXiv:0704.1384v1<http:// arxiv.org/abs/0704.1384v1>[math.AG]. Recio, T., Sendra, J.R., Villarino, C., 2004. From hypercircles to units. In: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation. ACM, New York, pp. 258265. Schicho, J., 1998a. Inversion of birational maps with Gröbner bases. In: Gröbner Bases and Applications (Linz, 1998). In: London Math. Soc. Lect. Note Ser., vol. 251. Cambridge Univ. Press, Cambridge, pp. 495503. Schicho, J., 1998b. Rational parameterization of real surfaces. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (Rostock). ACM, New York, pp. 302308 (electronic). Schicho, J., 2002. Simplification of surface parametrizations. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. ACM, New York, pp. 229237 (electronic). Sederberg, T.W., 1986. Improperly parametrized rational curves. Comput. Aided Geom. Design 3, 6775. Sendra, J.R., Winkler, F., 2001. Tracing index of rational curve parametrizations. Comput. Aided Geom. Design 18 (8), 771795. Shafarevich, I.R., 1994. Basic Algebraic Geometry, 2nd ed. vol I, II. Springer-Verlag, Berlin. Weil, A., 1995. Adèles et groupes algébriques. In: Séminaire Bourbaki. In: Soc. Math. France, Paris, vol. 5. pp. 249257. Exp. No. 186.
dspace.entity.typePublication
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscoverya74c23fe-4059-4e73-806b-71967e14ab67

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02.pdf
Size:
973.33 KB
Format:
Adobe Portable Document Format

Collections