Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multivalent Glycosylated Nanostructures for Ebola Virus Infection

dc.contributor.authorIllescas Martínez, Beatriz María
dc.contributor.authorRojo, Javier
dc.contributor.authorDelgado Vázquez, Rafael
dc.contributor.authorMartín León, Nazario
dc.date.accessioned2023-06-17T22:21:34Z
dc.date.available2023-06-17T22:21:34Z
dc.date.issued2017
dc.description.abstractThe infection of humans by lethal pathogens such as Ebola and other related viruses has not been properly addressed so far. In this context, a relevant question arises: what can chemistry do in the search for new strategies and approaches to solve this emergent problem? Although initially a variety of known chemical compounds – for other purposes – have been disappointingly tested against Ebola virus infection, more recently, specific molecules have been prepared. In this Perspective, we present a new approach directed to the design of efficient entry inhibitors to minimize the development of resistance by viral mutations. In particular, we focused on dendrimers as well as fullerene C60 – with a unique symmetrical and 3D globular structure – as biocompatible carbon platforms for the multivalent presentation of carbohydrates. The antiviral activity of these compounds in an Ebola pseudotyped infection model were in the low micromolar range for fullerenes with 12 and 36 mannoses. However, new tridecafullerenes – in which the central alkyne scaffold of [60]fullerene has been connected to 12 sugar-containing [60]fullerene units (total 120 mannoses)– exhibit an outstanding antiviral activity with IC50 in the subnanomolar range! The multivalent presentation of specific carbohydrates by using 3D fullerenes as controlled biocompatible carbon scaffolds represents a real advance being currently the most efficient molecules in vitro against Ebola virus infection. However, additional studies are needed to determine the optimized fullerene-based leads for practical applications.en
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.sponsorshipInstituto de Salud Carlos III
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/46624
dc.identifier.doi10.1021/jacs.7b01683
dc.identifier.essn1520-5126
dc.identifier.issn0002-7863
dc.identifier.officialurlhttps://pubs.acs.org/doi/abs/10.1021/jacs.7b01683
dc.identifier.relatedurlhttps://pubs.acs.org/doi/abs/10.1021/jacs.7b01683
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18416
dc.issue.number17
dc.journal.titleJournal of the American Chemical Society
dc.language.isoeng
dc.page.final6025
dc.page.initial6018
dc.publisherACS
dc.relation.projectID(CTQ2014- 52045-R and CTQ2014-52328-P)
dc.relation.projectID(FIS DTS1500171)
dc.rights.accessRightsopen access
dc.subject.cdu547
dc.subject.ucmQuímica orgánica (Química)
dc.subject.unesco2306 Química Orgánica
dc.titleMultivalent Glycosylated Nanostructures for Ebola Virus Infectionen
dc.typejournal article
dc.volume.number139
dspace.entity.typePublication
relation.isAuthorOfPublication487572dc-86c7-4d3c-9d0d-a91df9023595
relation.isAuthorOfPublication6612f6f9-e6aa-4eb2-bcf2-158a46babc21
relation.isAuthorOfPublicationbbb2c026-daab-46a1-8b57-fa3cf1a7d41a
relation.isAuthorOfPublication.latestForDiscovery6612f6f9-e6aa-4eb2-bcf2-158a46babc21

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JACS_perspectives_270317 (nzario).pdf
Size:
346.28 KB
Format:
Adobe Portable Document Format

Collections