Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Applying game-learning environments to power capping scenarios via reinforcement learning

dc.book.titleCloud Computing, Big Data and Emerging Topics
dc.contributor.authorHernández Aguado, Pablo
dc.contributor.authorCostero Valero, Luis María
dc.contributor.authorOlcoz Herrero, Katzalin
dc.contributor.authorIgual Peña, Francisco Daniel
dc.date.accessioned2023-06-16T13:03:58Z
dc.date.available2023-06-16T13:03:58Z
dc.date.issued2022-08-05
dc.description© Conference on Cloud Computing, Big Data and Emerging Topics (10. 2022. La Plata, Argentina) ISSN 1865-0929 This work was supported by the EU (FEDER) and Spanish MINECO (RTI2018-093684-B-I00), and Comunidad de Madrid under the Multiannual Agreement with Complutense University in the line Program to Stimulate Research for Young Doctors in the context of the V PRICIT under projects PR65/19-22445 and CM S2018/TCS-4423.
dc.description.abstractResearch in deep learning for video game playing has received much attention and provided very relevant results in the last years. Frameworks and libraries have been developed to ease game playing research leveraging Reinforcement Learning techniques. In this paper, we propose to use two of them (RLLIB and GYM) in a very different scenario, such as learning to apply resource management policies in a multi-core server, specifically, we leverage the facilities of both frameworks coupled to derive policies for power-capping. Using RLlib and Gym enables implementing different resource management policies in a simple and fast way and, as they are based on neural networks, guarantees the efficiency in the solution, and the use of hardware accelerators for both training and inference. The results demonstrate that game-learning environments provide an effective support to cast a completely different scenario, and open new research avenues in the field of resource management using reinforcement learning techniques with minimal development effort.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e innovación (MICINN) / FEDER
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75909
dc.identifier.doi10.1007/978-3-031-14599-5_7
dc.identifier.isbn978-3-031-14598-8
dc.identifier.officialurlhttp://dx.doi.org/10.1007/978-3-031-14599-5_7
dc.identifier.relatedurlhttps://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/2494
dc.issue.number1634
dc.language.isoeng
dc.page.final106
dc.page.initial91
dc.page.total14
dc.publication.placeNueva York
dc.publisherSpringer international Publishing
dc.relation.ispartofseriesCommunications in Computer and Information Science
dc.relation.projectIDRTI2018-093684-B-I00
dc.relation.projectIDCABAHLA-CM (S2018/TCS-4423)
dc.relation.projectIDSHARPE (PR65/19-22445)
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.keywordManagement
dc.subject.keywordReinforcement learning
dc.subject.keywordRLLIB
dc.subject.keywordGYM
dc.subject.keywordResource management
dc.subject.keywordPower capping
dc.subject.keywordDVFS
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleApplying game-learning environments to power capping scenarios via reinforcement learning
dc.typebook part
dc.volume.number1634
dspace.entity.typePublication
relation.isAuthorOfPublicationb2616c88-d3da-43df-86cb-3ced1084f460
relation.isAuthorOfPublication8cfc18ec-4816-404d-982d-21dc07318c07
relation.isAuthorOfPublicatione1ed9960-37d5-4817-8e5c-4e0e392b4d66
relation.isAuthorOfPublication.latestForDiscoveryb2616c88-d3da-43df-86cb-3ced1084f460

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Olcoz29 postprint+EMB(05-ago-2023).pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format