Applying game-learning environments to power capping scenarios via reinforcement learning
dc.book.title | Cloud Computing, Big Data and Emerging Topics | |
dc.contributor.author | Hernández Aguado, Pablo | |
dc.contributor.author | Costero Valero, Luis María | |
dc.contributor.author | Olcoz Herrero, Katzalin | |
dc.contributor.author | Igual Peña, Francisco Daniel | |
dc.date.accessioned | 2023-06-16T13:03:58Z | |
dc.date.available | 2023-06-16T13:03:58Z | |
dc.date.issued | 2022-08-05 | |
dc.description | © Conference on Cloud Computing, Big Data and Emerging Topics (10. 2022. La Plata, Argentina) ISSN 1865-0929 This work was supported by the EU (FEDER) and Spanish MINECO (RTI2018-093684-B-I00), and Comunidad de Madrid under the Multiannual Agreement with Complutense University in the line Program to Stimulate Research for Young Doctors in the context of the V PRICIT under projects PR65/19-22445 and CM S2018/TCS-4423. | |
dc.description.abstract | Research in deep learning for video game playing has received much attention and provided very relevant results in the last years. Frameworks and libraries have been developed to ease game playing research leveraging Reinforcement Learning techniques. In this paper, we propose to use two of them (RLLIB and GYM) in a very different scenario, such as learning to apply resource management policies in a multi-core server, specifically, we leverage the facilities of both frameworks coupled to derive policies for power-capping. Using RLlib and Gym enables implementing different resource management policies in a simple and fast way and, as they are based on neural networks, guarantees the efficiency in the solution, and the use of hardware accelerators for both training and inference. The results demonstrate that game-learning environments provide an effective support to cast a completely different scenario, and open new research avenues in the field of resource management using reinforcement learning techniques with minimal development effort. | |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e innovación (MICINN) / FEDER | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/75909 | |
dc.identifier.doi | 10.1007/978-3-031-14599-5_7 | |
dc.identifier.isbn | 978-3-031-14598-8 | |
dc.identifier.officialurl | http://dx.doi.org/10.1007/978-3-031-14599-5_7 | |
dc.identifier.relatedurl | https://link.springer.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/2494 | |
dc.issue.number | 1634 | |
dc.language.iso | eng | |
dc.page.final | 106 | |
dc.page.initial | 91 | |
dc.page.total | 14 | |
dc.publication.place | Nueva York | |
dc.publisher | Springer international Publishing | |
dc.relation.ispartofseries | Communications in Computer and Information Science | |
dc.relation.projectID | RTI2018-093684-B-I00 | |
dc.relation.projectID | CABAHLA-CM (S2018/TCS-4423) | |
dc.relation.projectID | SHARPE (PR65/19-22445) | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 004.8 | |
dc.subject.keyword | Management | |
dc.subject.keyword | Reinforcement learning | |
dc.subject.keyword | RLLIB | |
dc.subject.keyword | GYM | |
dc.subject.keyword | Resource management | |
dc.subject.keyword | Power capping | |
dc.subject.keyword | DVFS | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.title | Applying game-learning environments to power capping scenarios via reinforcement learning | |
dc.type | book part | |
dc.volume.number | 1634 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b2616c88-d3da-43df-86cb-3ced1084f460 | |
relation.isAuthorOfPublication | 8cfc18ec-4816-404d-982d-21dc07318c07 | |
relation.isAuthorOfPublication | e1ed9960-37d5-4817-8e5c-4e0e392b4d66 | |
relation.isAuthorOfPublication.latestForDiscovery | b2616c88-d3da-43df-86cb-3ced1084f460 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Olcoz29 postprint+EMB(05-ago-2023).pdf
- Size:
- 2.08 MB
- Format:
- Adobe Portable Document Format