Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Implementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC

dc.contributor.authorAntoranz Canales, Pedro
dc.contributor.authorBarrio Uña, Juan Abel
dc.contributor.authorContreras González, José Luis
dc.contributor.authorFonseca González, María Victoria
dc.contributor.authorLópez Moya, Marcos
dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorNieto Castaño, Daniel
dc.date.accessioned2023-06-20T10:37:56Z
dc.date.available2023-06-20T10:37:56Z
dc.date.issued2008-04-11
dc.description© Elsevier Science.We thank Jens Zimmermann for fruitful discussions about the RF method and for comparisons of the RF method with a Neural Net approach.
dc.description.abstractThe paper describes an application of the tree classification method Random Forest (RF), as used in the analysis of data from the ground-based gamma telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to be discriminated against a dominating background of hadronic cosmic-ray particles. We describe the application of RF for this gamma/hadron separation. The RF method often shows superior performance in comparison with traditional semi-empirical techniques. Critical issues of the method and its implementation are discussed. An application of the RF method for estimation of a continuous parameter from related variables, rather than discrete classes, is also discussed. (C) 2008 Published by Elsevier B.V.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23164
dc.identifier.doi10.1016/j.nima.2007.11.068
dc.identifier.issn0168-9002
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.nima.2007.11.068
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/0709.3719
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50837
dc.issue.number3
dc.journal.titleNuclear instruments & methods in physics research. Section A, Accelerators spectrometers detectors and associated equipment
dc.language.isoeng
dc.page.final432
dc.page.initial424
dc.publisherElsevier Science BV
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.cdu539.1
dc.subject.keywordGamma-Ray
dc.subject.keywordSeparation
dc.subject.keywordRadiation.
dc.subject.ucmElectrónica (Física)
dc.subject.ucmElectricidad
dc.subject.ucmFísica nuclear
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleImplementation of the Random Forest method for the Imaging Atmospheric Cherenkov Telescope MAGIC
dc.typejournal article
dc.volume.number588
dcterms.references[1] A.M. Hillas, in: Proceedings of the 19th International Cosmic Ray Conference, ICRC 1985, La Jolla, vol. 3, 1985, p. 445. [2] A.M. Hillas, Space Sci. Rev. 75 (1996) 17. [3] D.J. Fegan, J. Phys. G, Nucl. Part. Phys 23 (1997) 1013. [4] F. Aharonian, et al., Astropart. Phys. 6 (1997) 343. [5] H. Krawczynski, et al., Astropart. Phys. 25 (2006) 380. [6] R.K. Bock, A. Chilingarian, M. Gaug, et al., Nucl. Instr. and Meth. A 516 (2004) 511. [7] T. Hengstebeck, Ph.D. Thesis, Mathematisch-Naturwissenschaftliche Fakultät I, Humboldt-Universität zu Berlin, März 2007, Available at URL: hhttp://edoc.hu-berlin.de/docviews/abstract.php?id=28015i. [8] E. Lorenz, New Astron. Rev. 48 (2004) 339. [9] L. Breimann, J.H. Friedmann, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, CA, 1983. [10] J. Albert, et al., Astrophys. J. 664 (2007) L87. [11] J. Albert, et al., Astrophys. J. 665 (2007) L51. [12] J. Albert, et al., Astrophys. J. 669 (2007) 1143. [13] J. Albert, et al., Astrophys. J. 674 (2008) 1037. [14] L. Breiman, FORTRAN program random forests, Version 3.1, and L. Breiman, Manual on setting up, using, and understanding random forests V3. 1, both available at: hhttp://oz.berkeley.edu/users/breimani. [15] R. Brun, F. Rademakers hhttp://root.cern.ch/i. [16] J. Zimmermann, Ph.D. Thesis, Fakultät für Physik, Ludwig-Maximilians-Universität München, Juni 2005, Available at URL:hhttp://edoc.mpg.de/274832i.
dspace.entity.typePublication
relation.isAuthorOfPublication6bc87e5f-9b77-4982-b112-0d4f8aa128d0
relation.isAuthorOfPublication11e5fd8b-1a86-4f8d-85c6-135541232be4
relation.isAuthorOfPublication6a14529e-a65e-4709-9bc1-61f9429841c1
relation.isAuthorOfPublication9f2c0e34-0edd-497a-bbd0-fbd9d348e85c
relation.isAuthorOfPublication8b5d96d7-bd11-4ee4-87d0-258a1e077e26
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication60928160-a862-4814-a08f-4d80c6a1cdab
relation.isAuthorOfPublication.latestForDiscovery6bc87e5f-9b77-4982-b112-0d4f8aa128d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM61preprint.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format

Collections