Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Long Run Returns Predictability and Volatility with Moving Averages

dc.contributor.authorChang, Chia-Lin
dc.contributor.authorIlomäki, Jukka
dc.contributor.authorLaurila, Hannu
dc.contributor.authorMcAleer, Michael
dc.date.accessioned2023-06-17T17:53:49Z
dc.date.available2023-06-17T17:53:49Z
dc.date.issued2018-09
dc.description.abstractThe paper examines how the size of the rolling window, and the frequency used in moving average (MA) trading strategies, affect financial performance when risk is measured. We use the MA rule for market timing, that is, for when to buy stocks and when to shift to the risk-free rate. The important issue regarding the predictability of returns is assessed. It is found that performance improves, on average, when the rolling window is expanded and the data frequency is low. However, when the size of the rolling window reaches three years, the frequency loses its significance and all frequencies considered produce similar financial performance. Therefore, the results support stock returns predictability in the long run. The procedure takes account of the issues of variable persistence as we use only returns in the analysis. Therefore, we use the performance of MA rules as an instrument for testing returns predictability in financial stock markets.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.sponsorshipthe Ministry of Science and Technology (MOST), Taiwan
dc.description.sponsorshipthe Australian Research Council
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/49154
dc.identifier.issn2341-2356
dc.identifier.officialurlhttps://www.ucm.es/icae/working-papers
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17442
dc.issue.number25
dc.language.isoeng
dc.page.total34
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.jelC22
dc.subject.jelC32
dc.subject.jelC58
dc.subject.jelG32
dc.subject.keywordTrading strategies
dc.subject.keywordRisk
dc.subject.keywordMoving average
dc.subject.keywordMarket timing
dc.subject.keywordReturns predictability
dc.subject.keywordVolatility
dc.subject.keywordRolling window
dc.subject.keywordData frequency.
dc.subject.ucmEconometría (Economía)
dc.subject.ucmMercados bursátiles y financieros
dc.subject.unesco5302 Econometría
dc.titleLong Run Returns Predictability and Volatility with Moving Averages
dc.typetechnical report
dc.volume.number2018
dcterms.referencesReferences Allen, D., McAleer, M., & Scharth, M. (2014). Asymmetric realized volatility risk. Journal of Risk and Financial Management, 7, 80-109. Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economics, 51, 245-271. Ang, A., & Bekaert, G. (2007). Stock return predictability: Is it there? Review of Financial Studies, 20, 651-707. Baker, M., Bradley, B., & Wurgler, J. (2011). Benchmark as limits to arbitrage: Understanding the low-volatility anomaly. Financial Analysts Journal, 67, 1-15. Black, F. (1986). Noise. Journal of Finance, 41, 528-543. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327. Boudoukh, J., Richardson, M., & Whitelaw, R. (2008). The myth of long-horizon predictability. Review of Financial Studies, 21, 1577-1603. Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. Journal of Finance, 47, 1731-1764. Brown, D., & Jennings, R. (1989). On technical analysis. Review of Financial Studies, 2, 527-551. Campbell, J., & Cochrane, J. (1999). By force of habit: Consumption-based explanation of aggregate stock market behavior. Journal of Political Economy, 107, 205-251. Campbell, J., & Shiller, R. (1988). The dividend-price ratio and expectations of future dividends and discount factors. Review of Financial Studies, 1, 195-228. Campbell, J., & Thompson, S. (2008). Predicting excess returns out of sample: can anything beat the historical average? Review of Financial Studies, 21, 1509-1532. Campbell, J., & Viceira, I. (1999). Consumption and portfolio decisions when expected returns are time varying. Quarterly Journal of Economics, 114, 433-495. Campbell, J. & Yogo, M. (2006). Efficient test of stock return predictability. Journal of Financial Economics, 81, 27-60. Chang, C. & McAleer, M. (2012). Aggregation, heterogenous autoregression and volatility of daily international tourist arrivals and exchange rates. Japanese Economic Review, 63, 397-419. Chang, C., McAleer, M. & Tansuchat, R. (2012). Modelling long memory volatility in agricultural commodity futures returns. Annals of Financial Economics, 2, 1-27. Cochrane, J. (1999). New facts in finance. Economic Perspectives, 23, 36-58. Cochrane, J. (2008). The dog that did not bark: A defense of return predictability. Review of Financial Studies, 21, 1533-1573. Cochrane, J. (2011). Discount rates. Journal of Finance, 66, 1047-1108. Corsi, F. (2009) A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7, 174-196. Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. Engle, R., & Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric Reviews, 5, 1-30. Fama, E. (1998). Market efficiency, long-term returns, and behavioral finance. Journal of Financial Economics, 49, 283-306. Fama, E. & French, K., (1988). Dividend yields and expected returns. Journal of Financial Economics, 22, 3-25. Gartley, H. (1935). Profits in the Stock Markets. Washington: Lambert-Gann Publishing. Hjalmarsson, E. (2010). Predicting global stock returns. Journal of Financial and Quantitative Analysis, 45, 49-80. Hudson, R., McGroarty, F., & Urquhart, A. (2017). Sampling frequency and the performance of different types of technical trading rules. Finance Research Letters, 22, 136-139. Ilomäki, J. (2018). Risk and return of a trend-chasing application in financial markets: an empirical test. Risk Management 20, 258-271. Ilomäki, J., Laurila, H., McAleer, M., (2018). Market timing with moving averages. Sustainability, 10 (7:2125), 2018, 1-25. LeRoy, S. (1973). Risk aversion and the martingale property of stock prices. International Economic Review, 14, 436-446. Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 47, 13-37. Lo, A., Mamaysky, H., Wang, J. (2000). Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Journal of Finance, 54, 1705-1770. Lucas, R. (1978), Asset prices in an exchange economy. Econometrica, 46, 1429-1445. Maio, P. (2014). Don’t fight the Fed! Review of Finance, 18, 623–679. Markowitz, H. (1952), Portfolio selection. Journal of Finance 7, 77-91. Malkiel, B. (2003), The efficient market hypothesis and its critics. Journal of Economic Perspectives 17, 59-82. Marshall, B., Nguyen, N., Visaltanachoti, N. (2017). Time series momentum and moving average trading rules. Quantitative Finance 17, 405-421. McAleer, M. (2014). Asymmetry and leverage in conditional volatility models. Econometrics 2(3), 145-150. Menkhoff, L. (2010). The use of technical analysis by fund managers: International evidence. Journal of Banking and Finance, 34, 2573-2586. Menzly, L., Santos, T., & Veronesi, P. (1999). Understanding predictability. Journal of Political Economy, 112, 1-47. Merton, R. (1973). An intertemporal capital asset pricing model. Econometrica, 41, 867-887. Merton, R. (1981), On market timing and investment performance. I. An equilibrium theory of value for market forecast, Journal of Business 54: 363-406. Neely, C., Rapach, D., Tu, J., Zhou, G. (2014). Forecasting equity risk premium: The role of technical indicators. Management Science 66, 1772-1791. Ni, Y., Liao, Y., Huang, P. (2015). MA trading rules, and stock market overreaction. International Review of Economics and Finance, 39, 253-265. Sharpe, W. (1964), Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19, 425-442. Shiller, R. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? American Economic Review, 71, 421-436. Sullivan, R., Timmermann, A., White, H. (1999), Data-snooping, technical trading rule performance and the bootstrap. Journal of Finance 53, 1647-1691. Tobin, J. (1958), Liquidity preference as behavior towards risk, Review of Economic Studies, 67. 65-86. Valkanov, R. (2003). Long-horizon regressions: Theoretical results and applications. Journal of Financial Economics, 68, 201-232. Zhu, Y., Zhou, G. (2009). Technical analysis: An asset allocation perspective on the use of moving averages. Journal of Financial Economics, 91, 519-544. Yamamoto, R. (2012). Intraday technical analysis of individual stocks on the Tokyo Stock Exchange. Journal of Banking and Finance, 36, 3033-3047.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1825.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format