Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Dynamical control of correlated states in a square quantum dot

dc.contributor.authorCreffield, Charles
dc.contributor.authorPlatero, G.
dc.date.accessioned2023-06-20T20:10:30Z
dc.date.available2023-06-20T20:10:30Z
dc.date.issued2002-12-15
dc.description© 2002 The American Physical Society. The authors would like to thank John Jefferson for helpful discussions and comments. This research was supported by the EU through the TMR program ‘‘Quantum Transport in the Frequency and Time Domains,’’ and by the DGES (Spain) through Grant No. PB96-0875.
dc.description.abstractIn the limit of low particle density, electrons confined to a quantum dot form strongly correlated states termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find that, for certain combinations of frequency and strength of the applied field, the tunneling between various charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anticrossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled states in mesoscopic devices.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEU through the TMR program ‘‘Quantum Transport in the Frequency and Time Domains,’’
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33712
dc.identifier.doi10.1103/PhysRevB.66.235303
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.66.235303
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59751
dc.issue.number23
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDPB96-0875.
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordRadiation
dc.subject.keywordMolecule
dc.subject.keywordField.
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleDynamical control of correlated states in a square quantum dot
dc.typejournal article
dc.volume.number66
dcterms.references1. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, and L.P. Kouwenhoven, Nature (London) 395, 873 (1998). 2. B.E. Cole, J.B. Williams, B.T. King, M.S. Sherwin, and C.R. Stanley, Nature (London) 410, 60 (2001); D. Vion, A. Aasime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Science 296, 886 (2002). 3. F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). 4. M. Grifoni and P. Hänggi, Phys. Rep. 304, 229 (1998). 5. J.H. Jefferson and W. Häusler, Phys. Rev. B 54, 4936 (1996). 6. S. Akbar and I.-H. Lee, Phys. Rev. B 63, 165301 (2001). 7. C.E. Creffield, W. Häusler, J.H. Jefferson, and S. Sarkar, Phys. Rev. B 59, 10 719 (1999). 8. C.E. Creffield, J.H. Jefferson, S. Sarkar, and D.L.J. Tipton, Phys. Rev. B 62, 7249 (2000). 9. M. Koskinen, M. Manninen, B. Mottelson, and S.M. Reimann, Phys. Rev. B 63, 205323 (2001). 10. D.G. Austing, T. Honda, and S. Tarucha, Semicond. Sci. Technol. 12, 631 (1997). 11. J.T. Stockburger, Phys. Rev. E 59, R4709 (1999). 12. C.A. Stafford and S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994); R. Kotlyar and S. Das Sarma, Phys. Rev. B 55, R10205 (1997). 13. C.S. Lent, Science 288, 159 (2000); G.H. Bernstein, I. Amlani, A.O. Orlov, C.S. Lent, and G.L. Snider, Nanotechnology 10, 166 (1999). 14. C.E. Creffield and G. Platero, Phys. Rev. B 65, 113304 (2002). 15. T. Fujisawa, D.G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Phys. Rev. Lett. 88, 236802 (2002). 16. M. Holthaus, Z. Phys. B: Condens. Matter 89, 251 (1992). 17. J.H. Shirley, Phys. Rev. 138, B979 (1965). 18. M. Holthaus, Phys. Rev. Lett. 69, 351 (1992). 19. H. Sambe, Phys. Rev. A 7, 2203 (1973).
dspace.entity.typePublication
relation.isAuthorOfPublication3b58cb19-3165-4b80-a65d-1e03b90ebf64
relation.isAuthorOfPublication.latestForDiscovery3b58cb19-3165-4b80-a65d-1e03b90ebf64

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Creffield C 26 LIBRE.pdf
Size:
536.52 KB
Format:
Adobe Portable Document Format

Collections