Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Roving Robots Gain from an Orientation Algorithm of Fruit Flies and Predict a Fly-Decision Making Algorithm

dc.conference.titleThird International Conference, Living Machines 2014. Biomimetic and Biohybrid Systems
dc.contributor.authorStrauss, Roland
dc.contributor.authorFlethe, Sussan
dc.contributor.authorVillacorta Atienza, José Antonio
dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorGarcía Velarde, Manuel
dc.contributor.authorPatane, Luca
dc.contributor.authorArena, Paolo
dc.contributor.editorDuff, Armin
dc.contributor.editorLepora, Nathan
dc.contributor.editorMura, Anna
dc.contributor.editorPrescott, Tony
dc.contributor.editorVerschure, Paul
dc.date.accessioned2024-01-31T17:30:40Z
dc.date.available2024-01-31T17:30:40Z
dc.date.issued2014
dc.description.abstractSimple organisms like bacteria are directly influenced by momentary changes in concentration or strength of sensory signals. In noisy sensory gradients frequent zigzagging reduces the performance of the cell or organism. Drosophila melanogaster flies significantly deviate from a direct response to sensory input when orienting in gradients. A dynamical model has been derived which reproduces fly behaviour. Here we report on an emergent property of the model. Implemented in a robot, the algorithm is sustaining decisions between visual targets. The behaviour was consequently found in wild-type flies, which stay with a once-chosen visual target for considerable longer times than mutant flies with a specific brain defect. This allowed the localisation of the integrator. Flies were tested in a virtual-reality arena with two alternatingly visible target objects under different visibility regimes. The finding exemplifies how basic research and technical application can mutually benefit from close collaboration.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Óptica y Optometría
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationStrauss, R. et al. (2014). Roving Robots Gain from an Orientation Algorithm of Fruit Flies and Predict a Fly Decision-Making Algorithm. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_53
dc.identifier.doi10.1007/978-3-319-09435-9_53
dc.identifier.essn0302-9743
dc.identifier.isbn978-3-319-09435-9 (online)
dc.identifier.isbn978-3-319-09434-2 (print)
dc.identifier.issn1611-3349
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-319-09435-9_53
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-319-09435-9_53
dc.identifier.urihttps://hdl.handle.net/20.500.14352/97354
dc.language.isoeng
dc.page.final435
dc.page.initial433
dc.rights.accessRightsrestricted access
dc.subject.cdu007.52
dc.subject.cdu004.896
dc.subject.keywordInsect orientation
dc.subject.keywordWorking memory
dc.subject.keywordBiomimetic robots
dc.subject.ucmCiencias
dc.subject.ucmRobótica
dc.subject.unesco24 Ciencias de la Vida
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleRoving Robots Gain from an Orientation Algorithm of Fruit Flies and Predict a Fly-Decision Making Algorithm
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication21b23d2b-75f8-4803-9370-4e88539b81cc
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication60d9e677-c942-4e71-bfd2-566847e1a47a
relation.isAuthorOfPublication.latestForDiscovery21b23d2b-75f8-4803-9370-4e88539b81cc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Roving_Robots.pdf
Size:
209.4 KB
Format:
Adobe Portable Document Format

Collections