Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Continuous and Localized Mn Implantation of ZnO

dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorHernández Vélez, M.
dc.contributor.authorJensen, J.
dc.contributor.authorMartínez, O.
dc.contributor.authorSanz, R.
dc.contributor.authorVázquez, M.
dc.date.accessioned2023-06-20T03:46:02Z
dc.date.available2023-06-20T03:46:02Z
dc.date.issued2009-08
dc.description© Springer. We are grateful to P. Fernández and J.L. Baldonedo, Universidad Complutense, for help with the ion implantations and SEM pictures. This work was supported in part by the Spanish Ministry of Education under Grant MAT2007-6042. J. Jensen thanks the Carl Tryggers Foundation (Sweden) for financial support.
dc.description.abstractWe present results derived from continuous and localized 35 keV (55)Mn(+) ion implantations into ZnO. Localized implantations were carried out by using self-ordered alumina membranes as masks leading to ordered arrays of implanted volumes on the substrate surfaces. Defects and vacancies in the small implantation volumes of ZnO were generated due to the implantation processes besides the creation of new phases. Rapid thermal annealing was applied in the case of continuous implantation. The samples were characterized by HRSEM, GIXRD, Raman spectroscopy and RBS/C. Magnetic characterization of the samples pointed out appreciable differences among the samples obtained by the different implantation methods. This fact was mainly attributed to the different volume/surface ratios present in the implanted zones as well as to the increase of Mn atom concentrations along the grain frontiers in the nanostructured surfaces. The samples also showed a ferromagnetic transition phase at temperature value higher than room temperature.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education
dc.description.sponsorshipCarl Tryggers Foundation (Sweden)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27402
dc.identifier.doi10.1007/s11671-009-9327-5
dc.identifier.issn1931-7573
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s11671-009-9327-5
dc.identifier.relatedurlhttp://www.nanoscalereslett.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44404
dc.issue.number8
dc.journal.titleNanoscale research letters
dc.language.isoeng
dc.page.final887
dc.page.initial878
dc.publisherSpringer
dc.relation.projectIDMAT2007-6042
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu537
dc.subject.keywordRaman-Scattering
dc.subject.keywordDoped ZnO
dc.subject.keywordFerromagnetism
dc.subject.keywordNanoparticles
dc.subject.keywordFabrication
dc.subject.keywordNanowires
dc.subject.keywordCrystals
dc.subject.keywordArrays
dc.subject.keywordTiO2.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleContinuous and Localized Mn Implantation of ZnO
dc.typejournal article
dc.volume.number4
dcterms.references1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science, 287, 1019 (2000). doi:10.1126/science.287.5455.1019. 2. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys., 40(Part 2), L334 (2001). doi:10.1143/JJAP.40.L334. 3. C. Jagadish, S. Pearton (eds.), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsvier, Amsterdam, 2006). 4. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett. 88, 252502 (2006), doi:10.1063/1.2208564 5. N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc., 126, 9387 (2004), doi:10.1021/ja048427j. 6. W.B. Mia, H.L. Bai, H. Liu, C.Q. Sun, J. Appl. Phys., 101, 023904 (2007). 7. V.K. Sharma, G.D. Varmaa, J. Appl. Phys., 102, 056105 (2007), doi:10.1063/1.2778283. 8. C. Darshan, C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nat. Mater., 3, 709 (2005). 9. M.A. García, M.L. Ruiz-González, A. Quesada, J.L. Costa-Krámer, J.F. Fernández, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martín-González, M. Villegas, F. Briones, J.M. González-Calbet, A. Hernando, Phys. Rev. Lett., 94, 217206 (2005), doi:10.1103/PhysRevLett.94.217206. 10. E. Céspedes, J. García-López, M. García-Hernández, A. de Andrés, C. Prieto, J. Appl. Phys., 102, 033907 (2007), doi:10.1063/1.2764207. 11. K. Sun, S. Zhu, R. Fromknecht, G. Linker, L.M. Wang, Mater. Lett., 58, 547 (2004), doi:10.1016/S0167-577X(03)00559-7. 12. E. Sonder, R.A. Zuhr, R.E. Valiga, J. Appl. Phys., 64, 1140 (1988), doi:10.1063/1.341875. 13. J.B. Yi, H. Pan, J.Y. Lin, J. Ding, Y.P. Feng, S. Thongmee, T. Liu, H. Gong, L. Wang, Adv. Mater., 20, 1170 (2008). 14. M. Nakamura, S. Nigo, N. Kishimoto, Trans. Mater. Res. Soc. Jpn., 33, 1101 (2008). 15. www.srim.org. Accessed 30 Apr 2009. 16. R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vázquez, K. Hjort, Nano Lett., 6, 1065 (2006), doi:10.1021/nl0602185. 17. M. Hernández-Vélez, Thin Solid Films, 495, 51 (2006), doi:10.1016/j.tsf.2005.08.331. 18. R. Sanz, J. Jensen, A. Johansson, M. Skupinski, G. Possnert, M. Boman, M. Hernández-Vélez, M. Vázquez, K. Hjort, Nanotechnology, 18, 305303 (2007), doi:10.1088/0957-4484/18/30/305303. 19. S.W. Shin, S.G. Lee, J. Lee, C.N. Whang, J.-H. Lee, I.-H. Choi, T.G. Kim, J.H. Song, Nanotechnology, 16, 1396 (2005), doi:10.1088/0957-4484/16/8/070. 20. J.M. Calleja, M. Cardona, Phys. Rev. B, 16, 3753 (1997), doi:10.1103/PhysRevB.16.3753. 21. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B, 75, 165202 (2007), doi:10.1103/PhysRevB.75.165202. 22. L. Artús, R. Cuscó, E. Alarcón-Lladó, G. González-Díaz, I. Mártil, J. Jiménez, B. Wang, M.J. Callahan, Appl. Phys. Lett., 90, 181911 (2007), doi:10.1063/1.2734474. 23. Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, J. Appl. Phys., 97, 013528 (2005), doi:10.1063/1.1821636. 24. J. Yu, H. Xing, Q. Zhao, H. Mao, Y. Shen, J. Wang, Z. Lai, Z. Zhu, Solid State Commun., 138, 502 (2006), doi:10.1016/j.ssc.2006.04.019.
dspace.entity.typePublication
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gonzalez-Diaz,G 25libre.pdf
Size:
589.05 KB
Format:
Adobe Portable Document Format

Collections