Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies

dc.contributor.authorGallego Maestro, Jesús
dc.contributor.authorotros, ...
dc.date.accessioned2023-06-16T14:23:52Z
dc.date.available2023-06-16T14:23:52Z
dc.date.issued2021-11-19
dc.description© ESO 2021. Artículo firmado por 20 autores. The authors gratefully thank the anonymous referee for the constructive comments and recommendations, which helped improve the paper's readability and quality. This work was supported by the project Evolution of Galaxies, of reference AYA2014-58861-C3-1-P and AYA2017-88007-C3-1-P, within the "Programa estatal de fomento de la investigación científica y técnica de excelencia del Plan Estatal de Investigación Científica y Técnica y de Innovación (2013-2016" of the "Agencia Estatal de Investigación del Ministerio de Ciencia, Innovación y Universidades", and co-financed by the FEDER "Fondo Europeo de Desarrollo Regional". JAD is grateful for the support from the UNAM-DGAPA-PASPA 2019 program, the UNAM-CIC, the Canary Islands CIE: Tricontinental Atlantic Campus 2017, and the kind hospitality of the IAC. MP acknowledges financial supports from the Ethiopian Space Science and Technology Institute (ESSTI) under the Ethiopian Ministry of Innovation and Technology (MoIT), and from the Spanish Ministry of Economy and Competitiveness (MINECO) through projects AYA2013-42227-P and AYA2016-76682C3-1-P, and from the Spanish Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación through projects PID2019-106027GB-C41 and AYA2016-76682C3-1-P. APG, MSP and RPM were supported by the PNAYA project: AYA2017-88007-C3-2-P. JG was supported by the PNAYA project AYA2018-RTI-096188-B-i00. MC & APG are also funded by Spanish State Research Agency grant MDM-2017-0737 (Unidad de Excelencia María de Maeztu CAB). JIGS receives support through the Proyecto Puente 52.JU25.64661 (2018) funded by Sodercan S.A. and the Universidad de Cantabria, and PGC2018-099705-B-100 funded by the Ministerio de Ciencia, Innovación y Universidades. EJA acknowledges funding from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and from grant PGC2018-095049-B-C21. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. This work is (partly) based on data obtained with the instrument OSIRIS, built by a Consortium led by the Instituto de Astrofísica de Canarias in collaboration with the Instituto de Astronomía of the Universidad Autónoma de Mexico. OSIRIS was funded by GRANTECAN and the National Plan of Astronomy and Astrophysics of the Spanish Government.
dc.description.abstractContext. Computational techniques are essential for mining large databases produced in modern surveys with value-added products. Aims. This paper presents a machine learning procedure to carry out a galaxy morphological classification and photometric redshift estimates simultaneously. Currently, only a spectral energy distribution (SED) fitting has been used to obtain these results all at once. Methods. We used the ancillary data gathered in the OTELO catalog and designed a nonsequential neural network that accepts optical and near-infrared photometry as input. The network transfers the results of the morphological classification task to the redshift fitting process to ensure consistency between both procedures. Results. The results successfully recover the morphological classification and the redshifts of the test sample, reducing catastrophic redshift outliers produced by an SED fitting and avoiding possible discrepancies between independent classification and redshift estimates. Our technique may be adapted to include galaxy images to improve the classification.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipUnidad de Excelencia María de Maeztu
dc.description.sponsorshipUNAM-DGAPA-PASPA 2019 program
dc.description.sponsorshipUNAM-CIC
dc.description.sponsorshipCanary Islands CIE: Tricontinental Atlantic Campus 2017
dc.description.sponsorshipEthiopian Space Science and Technology Institute (ESSTI) under the Ethiopian Ministry of Innovation and Technology (MoIT)
dc.description.sponsorshipSodercan S.A.
dc.description.sponsorshipPNAYA project
dc.description.sponsorshipUniversidad de Cantabria
dc.description.sponsorshipGRANTECAN
dc.description.sponsorshipNational Plan of Astronomy and Astrophysics of the Spanish Government
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72775
dc.identifier.doi10.1051/0004-6361/202141360
dc.identifier.issn0004-6361
dc.identifier.officialurlhttp://dx.doi.org/10.1051/0004-6361/202141360
dc.identifier.relatedurlhttps://www.aanda.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4929
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.publisherEDP Sciencies
dc.relation.projectIDAYA2014-58861-C3-1-P; AYA2017- 88007-C3-1-P; PID2019- 106027GB-C41; AYA2016-76682C3-1-P; AYA2017–88007–C3–2–P; AYA2018–RTI-096188-B-i00; PGC2018–099705–B–100; PGC2018-095049-B-C21
dc.relation.projectIDAYA2013-42227- P and AYA2016-76682C3-1-P
dc.relation.projectIDSEV-2017-0709
dc.relation.projectIDMDM-2017-0737
dc.relation.projectIDPuente 52.JU25.64661
dc.relation.projectIDPGC2018-099705-B-100
dc.relation.projectIDPGC2018-095049-B-C21
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordMorphological classification
dc.subject.keywordData reduction
dc.subject.keywordMachine
dc.subject.keywordResolution
dc.subject.keywordColors
dc.subject.ucmAstrofísica
dc.titleNonsequential neural network for simultaneous, consistent classification, and photometric redshifts of OTELO galaxies
dc.typejournal article
dc.volume.number655
dspace.entity.typePublication
relation.isAuthorOfPublication303794a4-e4bf-4262-9a94-11bc46167d8e
relation.isAuthorOfPublication.latestForDiscovery303794a4-e4bf-4262-9a94-11bc46167d8e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jesusgallego150libre.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format

Collections