Aviso: por motivos de mantenimiento y mejora del repositorio, mañana martes día 13 de mayo, entre las 9 y las 14 horas, Docta Complutense, no funcionará con normalidad. Disculpen las molestias.
 

An Extension Theorem for convex functions of class C1,1 on Hilbert spaces

Loading...
Thumbnail Image

Full text at PDC

Publication date

2017

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

Let H be a Hilbert space, E⊂H be an arbitrary subset and f:E→R, G:E→H be two functions. We give a necessary and sufficient condition on the pair (f,G) for the existence of a convex function F∈C1,1(H) such that F=f and ∇F=G on E. We also show that, if this condition is met, F can be taken so that Lip(∇F)=Lip(G). We give a geometrical application of this result, concerning interpolation of sets by boundaries of C1,1 convex bodies in H. Finally, we give a counterexample to a related question concerning smooth convex extensions of smooth convex functions with derivatives which are not uniformly continuous.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections