Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Enhancing thermoelectric properties of graphene quantum rings

dc.contributor.authorSaiz-Bret´ın, M.
dc.contributor.authorMalyshev, Andrey
dc.contributor.authorOrellana, P. A.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-18T05:40:55Z
dc.date.available2023-06-18T05:40:55Z
dc.date.issued2015-02-27
dc.description© 2015 American Physical Society. Work in Madrid was supported by MINECO (projects MAT2010-17180 and MAT2013-46308). A.V.M. was partially supported by CAPES (Grant No. PVE-A121). P.A.O. acknowledges FONDECYT Grant No. 1140571 DGIP/USM internal Grant No. 11.11.62 and CONICYT ACT 1204. F.D-A. acknowledges support from MEC (Grant No. PRX14/00129) and thanks the Theoretical Physics Group of the University of Warwick for the warm hospitality. The authors also thank A. M. Goldsborough for the critical reading of the manuscript.
dc.description.abstractWe study the thermoelectric properties of rectangular graphene rings connected symmetrically or asymmetrically to the leads. A side-gate voltage applied across the ring allows for the precise control of the electric current flowing through the system. The transmission coefficient of the rings manifest Breit-Wigner line shapes and/or Fano line shapes, depending on the connection configuration, the width of nanoribbons forming the ring and the side-gate voltage. We find that the thermopower and the figure of merit are greatly enhanced when the chemical potential is tuned close to resonances. Such enhancement is even more pronounced in the vicinity of Fano-like antiresonances which can be induced by a side-gate voltage independently of the geometry. This opens a possibility to use the proposed device as a tunable thermoelectric generator.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMINECO
dc.description.sponsorshipCAPES
dc.description.sponsorshipFONDECYT
dc.description.sponsorshipDGIP/USM internal Grant
dc.description.sponsorshipCONICYT ACT
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29641
dc.identifier.doi10.1103/PhysRevB.91.085431
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.91.085431
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/23013
dc.issue.number8
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT2010-17180
dc.relation.projectIDMAT2013-46308
dc.relation.projectIDPVE-A121
dc.relation.projectID1140571
dc.relation.projectID11.11.62
dc.relation.projectID1204
dc.relation.projectIDPRX14/00129
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSilicon nanowires
dc.subject.keywordDot superlattice
dc.subject.keywordTransport
dc.subject.keywordDevices
dc.subject.keywordMerit
dc.subject.keywordNanoribbons
dc.subject.keywordFigure
dc.subject.ucmFísica de materiales
dc.titleEnhancing thermoelectric properties of graphene quantum rings
dc.typejournal article
dc.volume.number91
dcterms.references[1] H. J. Goldsmid, Introduction to thermoelectricity (Springer, Berlin, 2010). [2] B. Bhushan (ed.), Springer Handbook of Nanotechnology (Springer, Berlin, 2003). [3] L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631(R) (1993). [4] A. Khitun, A. Balandin, J. L. Liu, and K. L. Wang,J. Appl. Phys. 88, 696 (2000). [5] A. A. Balandin and O. L. Lazarenkova, Appl. Phys. Lett. 82, 415 (2003). [6] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature (London) 413, 597 (2001). [7] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Science 297, 2229 (2002). [8] A. I. Hochbaum, R. Chen, R. Diaz Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yan, Nature (London) 451, 163 (2008). [9] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard III, and J. R. Heath, Nature (London) 451, 168 (2008). [10] K. Koumoto and T. Mori (Eds.), Thermoelectric nanomaterials. Materials design and applications (Springer, Berlin, 2013). [11] P.-H. Chang and B. K. Nikolic Phys. Rev. B 86, 041406(R) (2012). [12] P. Murphy, S. Mukerjee, and J. Moore, Phys. Rev. B 78, 161406(R) (2008). [13] S. G. Sharapov and A. A. Varlamov, Phys. Rev. B 86, 035430 (2012). [14] J. P. Bergfield and C. A. Stafford, Nano Lett. 9, 3072 (2009). [15] O. Karlstrom, H. Linke, G. Karlström, and A. Wacker, ¨ Phys. Rev. B 84, 113415 (2011). [16] T. Nakanishi and T. Kato, J. Phys. Soc. Jpn. 76, 034715 (2007). [17] P. Trocha and J. Barnás, Phys. Rev. B 85, 085408 (2012). [18] G. Gómez-Silva, O. Ávalos-Ovando, M. L. Ladrón de Guevara, and P. A. Orellana, J. Appl Phys. 111, 053704 (2012). [19] C. M. Finch, V. M. García-Suarez, and C. J. Lambert, Phys. Rev. B 79, 033405 (2009). [20] V. M. García-Suárez, R. Ferradás, and J. Ferrer, Phys. Rev. B 88, 235417 (2013). [21] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). [22] P. C. Divari and G. S. Kliros, Physica E 42, 243 (2010). [23] Y. Ouyang and J. Guo, Appl. Phys. Lett. 94, 263107 (2009). [24] L. Rosales, C. D. Nunez, M. Pacheco, A. Latgé, and P. A. Orellana, J. Appl. Phys. 114, 153711(2013). [25] H. Sevinc¸li and G. Cuniberti, Phys. Rev. B 81, 113401 (2010). [26] F. Mazzamuto, V. Hung Nguyen, Y. Apertet, C. Caër, C. Chassat, J. Saint-Martin, and P. Dollfus Phys. Rev. B 83, 235426 (2011). [27] J. Munarriz, F. Domínguez-Adame, and A. V. Malyshev, Nanotech. 22, 365201 (2011). [28] J. Munarriz, F. Domínguez-Adame, P. A. Orellana, and A. V. Malyshev, Nanotech. 23, 205202 (2012). [29] H. A. Fertig and L. Brey, Phil. Trans. R. Soc. A 368, 5483 (2010). [30] C. S. Lent and D. J. Kirkner, J. Appl. Phys. 67, 6353 (1990). [31] D. Z.–Y. Ting, E. T. Yu, and T. C. McGill, Phys. Rev. B 45, 3583 (1992). [32] J. Schelter, D. Bohr, and B. Trauzettel, Phys. Rev. B 81, 195441 (2010). [33] J. Munárriz, Modelling of plasmonic and graphene nanodevices (Springer, Berlin, 2014). [34] G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996). [35] K.-M. Li, Z.-X. Xie, K.-L. Su, W.-L. Luo, and Y. Zhang, Phys. Lett. A 378, 1383 (2014). [36] J. Haskins, A. Kınacı, C. Sevik, H. Sevinc¸li, G. Çuniberti, and T. C¸agın, ACS Nano 5, 3779 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublicationb2abe0ef-0417-4f43-8dce-55d3205e22ec
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryb2abe0ef-0417-4f43-8dce-55d3205e22ec

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame205 libre.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format

Collections