Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Positivity for large time of solutions of the heat equation: The parabolic antimaximum principle

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorFleckinger-Pellé, Jacqueline
dc.date.accessioned2023-06-20T09:35:20Z
dc.date.available2023-06-20T09:35:20Z
dc.date.issued2004
dc.description.abstractWe study the positivity, for large time, of the solutions to the heat equation Q(a) (f,u(0)): [GRAPHIC] where Q is a smooth bounded domain in RN and a C R. We obtain some sufficient conditions for having a finite time t(p) > 0 (depending on a and on the data u(0) and f which are not necessarily of the same sign) such that u(t, x) > 0 For Allt > t(p), a.e.x is an element of Omega.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.sponsorshipEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15471
dc.identifier.issn1078-0947
dc.identifier.officialurlhttp://aimsciences.org/journals/pdfs.jsp?paperID=139&mode=full
dc.identifier.relatedurlhttp://aimsciences.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49976
dc.issue.number1-2
dc.journal.titleDiscrete and Continuous Dynamical Systems. Series A.
dc.language.isoeng
dc.page.final200
dc.page.initial193
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDREN2000-0766
dc.relation.projectIDRTN HPRN-CT-
dc.rights.accessRightsrestricted access
dc.subject.cdu517.95
dc.subject.keywordmaximum and antimaximum principle
dc.subject.keywordheat equation
dc.subject.keywordparabolic problems
dc.subject.ucmGeometría diferencial
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1204.04 Geometría Diferencial
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titlePositivity for large time of solutions of the heat equation: The parabolic antimaximum principle
dc.typejournal article
dc.volume.number10
dcterms.referencesAmann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18, N. 4, 620–709, (1976). Antontsev, S.N., Diaz, J.I., Shmarev, S.I. Energy Methods for free bounday problems. Applications to nonlinear PDEs and Fluid Mechanics, Series Progress in Nonlinear Differential Equations and Their Applications, No. 48, Birkäuser, Boston, (2002). Bertsch, M., Peletier, L.A., The asymptotic profile of solutions of a degenerate diffusion equation, Arch. Rat. Mech. Anal. 91, 207–229, (1985). Ph. Clément, L. A. Peletier, An anti-maximum principle for second order elliptic operators, J. Differential Equations 34, 218–229, (1979). Díaz, J.I., Morel, J.M., Sur les solutions de l'équation de la chaleur, unpublished manuscript, (1986). Díaz, J.I., de Thélin, F., On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25, 4, 1085–1111, (1994). Fleckinger, J., Gossez, J.P., Takáč, P., de Thélin, F., Non existence of solutions and an antimaximum principle for cooperative systems with the p - Laplacian, Math. Nachrichten, 194, 49–78, (1998). Gmira, A., Véron, L., Asymptotic Behaviour of the Solution of a Semilinear Parabolic Equation, Monatsh.Math. 94, 299–311, (1982). Sattinger, D., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math J., 21, 979–1000, (1972).
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
57.pdf
Size:
148.91 KB
Format:
Adobe Portable Document Format

Collections