Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Multi-modal ultrasound imaging for breast cancer detection

dc.contributor.authorMedina Valdés, L.
dc.contributor.authorPérez Liva, Mailyn
dc.contributor.authorCamacho, J.
dc.contributor.authorUdías Moinelo, José Manuel
dc.contributor.authorHerraiz, J. L.
dc.contributor.authorGonzalez Salido, N.
dc.date.accessioned2023-06-19T15:03:46Z
dc.date.available2023-06-19T15:03:46Z
dc.date.issued2015
dc.description© 2015 The Authors. Published by Elsevier B.V. Luis Medina wishes to acknowledge the Spanish Ministry of Economy and Competitiveness for the financial. support (grant BES-2011-048124). Annual Symposium of the Ultrasonic-Industry-Association (UIA Symposium)(43rd. 2014. Madrid, España)
dc.description.abstractThis work describes preliminary results of a two-modality imaging system aimed at the early detection of breast cancer. The first technique is based on compounding conventional echographic images taken at regular angular intervals around the imaged breast. The other modality obtains tomographic images of propagation velocity using the same circular geometry. For this study, a low-cost prototype has been built. It is based on a pair of opposed 128-element, 3.2 MHz array transducers that are mechanically moved around tissue mimicking phantoms. Compounded images around 360 degrees provide improved resolution, clutter reduction, artifact suppression and reinforce the visualization of internal structures. However, refraction at the skin interface must be corrected for an accurate image compounding process. This is achieved by estimation of the interface geometry followed by computing the internal ray paths. On the other hand, sound velocity tomographic images from time of flight projections have been also obtained. Two reconstruction methods, Filtered Back Projection (FBP) and 2D Ordered Subset Expectation Maximization (2D OSEM), were used as a first attempt towards tomographic reconstruction. These methods yield useable images in short computational times that can be considered as initial estimates in subsequent more complex methods of ultrasound image reconstruction. These images may be effective to differentiate malignant and benign masses and are very promising for breast cancer screening. (C) 2015 The Authors. Published by Elsevier B.V.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39241
dc.identifier.doi10.1016/j.phpro.2015.03.022
dc.identifier.issn1875-3892
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.phpro.2015.03.022
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/35245
dc.journal.titlePhysics procedia
dc.language.isoeng
dc.page.final140
dc.page.initial134
dc.publisherElsevier Science BV
dc.relation.projectIDBES-2011-048124
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu539.1
dc.subject.keywordTomography
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleMulti-modal ultrasound imaging for breast cancer detection
dc.typejournal article
dc.volume.number63
dcterms.references[1] H. Bartelt. Computation of local directivity, speed of sound and attenuation from ultrasonic reflection tomography data Ultrasonic Imaging, 10 (1988), pp. 110–120 [2] Breast cancer. (2014). Retrieved May 20, 2014, from http://www.cancer.org/cancer/breastcancer. [3] F. Fahei. Data Acquisition in PET Imaging. Journal Of Nuclear Medicine Technology, 30 (2) (2002), pp. 39–49 [4] G. Herman. Image reconstruction from projections: the fundamentals of computerized tomography. Academic Press (1980) [5] H. Hudson, R. Larkin. Accelerated image reconstruction using ordered subsets of projection data. Medical Imaging, IEEE Transactions on, 13 (1994), pp. 601–609 [6] A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman. Global cancer statistics.CA Cancer J Clin, 61 (2011), pp. 69–90 [7] B. Ranger, P.J. Littrup, N. Duric, P. Chandiwala-Mody, C. Li, S. Schmidt, J. Lupinacci. Breast ultrasound tomography versus magnetic resonance imaging for clinical display of anatomy and tumor rendering: Preliminary results. AJR Am J Roentgenol, 198 (1) (2012), pp. 233–239 [8] O. Roy, S. Schmidt, C. Li, V. Allada, E. West, D. Kunz, N. Duric. Breast imaging using ultrasound tomography: From clinical requirements to system design. Joint UFFC, EFTF and PFM Symposium (2013), pp. 1174–1177 [9] H. Schomberg. An improved approach to reconstructive ultrasound tomography. J. Phys. D: Appl. Phys., 11 (1978), pp. L181–L186 [10] L. Shepp, Y. Vardi. Maximum Likelihood Reconstruction for Emission Tomography. Medical Imaging IEEE Transactions on, 1 (1982), pp. 113–122 [11] G. Ursin, L. Hovanessian-Larsen, Y.R. Parisky, M.C. Pike, A.H. Wu. Greatly increased occurrence of breast cancers in areas of mammographically dense tissue. Breast Cancer Research, 7 (2005), pp. R605–R608 [12] J. Wiskin, D. Borup, S. Johnson, M. Berggren, D. Robinson, J. Smith, J. Chen, Y. Parisky, J. Klock. Inverse scattering and refraction corrected reflection for breast cancer imaging. Proc. SPIE Medical Imaging, 7629 (2010), p. 76290K
dspace.entity.typePublication
relation.isAuthorOfPublicationce19dc3c-ecdb-498e-8574-4ea96da8d98d
relation.isAuthorOfPublication3dc23e23-6e7e-47dd-bd61-8b6b7a1ad75f
relation.isAuthorOfPublication.latestForDiscoveryce19dc3c-ecdb-498e-8574-4ea96da8d98d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Udías JM 07 LIBRE + CC.pdf
Size:
498.54 KB
Format:
Adobe Portable Document Format

Collections