Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The asymptotic growth of the constants in the Bohnenblust-Hille inequality is optimal

dc.contributor.authorDiniz, D.
dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorPellegrino, Daniel
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T00:25:36Z
dc.date.available2023-06-20T00:25:36Z
dc.date.issued2012
dc.description.abstractThe search of sharp estimates for the constants in the Bohnenblust-Hille inequality, besides its challenging nature, has quite important applications in different fields of mathematics and physics. For homogeneous polynomials, it was recently shown that the Bohnenblust-Hille inequality (for complex scalars) is hypercontractive. This result, interesting by itself, has found direct striking applications in the solution of several important problems. For multilinear mappings, precise information on the asymptotic behavior of the constants of the Bohnenblust-Hille inequality is of particular importance for applications in Quantum Information Theory and multipartite Bell inequalities. In this paper, using elementary tools, we prove a quite surprising result: the asymptotic growth of the constants in the multilinear Bohnenblust-Hille inequality is optimal. Besides its intrinsic mathematical interest and potential applications to different areas, the mathematical importance of this result also lies in the fact that all previous estimates and related results for the last 80 years (such as, for instance, the multilinear version of the famous Grothendieck theorem for absolutely summing operators) always present constants C-m's growing at an exponential rate of certain power of m.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipCNPq
dc.description.sponsorshipPROCAD Novas Fronteiras CAPES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19941
dc.identifier.doi10.1016/j.jfa.2012.04.014
dc.identifier.issn0022-1236
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/00221236
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/pdf/1108.1550v2.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42551
dc.issue.number2
dc.journal.titleJournal of Functional Analysis
dc.language.isoeng
dc.page.final428
dc.page.initial415
dc.publisherElsevier
dc.relation.projectIDgrant MTM2009-07848.
dc.relation.projectIDGrant 301237/2009-3
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordBohnenblust-Hille inequality
dc.subject.keywordAsymptotic growth
dc.subject.keywordOptimal constants
dc.subject.keywordAbsolutely summing operators
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleThe asymptotic growth of the constants in the Bohnenblust-Hille inequality is optimal
dc.typejournal article
dc.volume.number263
dcterms.referencesS. Aaronson, A. Ambainis, The need for structure in quantum speedups, Electron. Colloq. Comput. Complex. 110 (2009). R. Blei, Analysis in Integer and Fractional Dimensions,Cambridge Stud. Adv. Math., vol. 71, Cambridge University Press, Cambridge, 2001. H.P. Boas, D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125 (10) (1997)2975–2979. H.F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (3) (1931) 600–622. F. Bombal, D. Pérez-García, I. Villanueva, Multilinear extensions of Grothendieck’s theorem, Q. J. Math. 55 (4)(2004) 441–450. A.M. Davie, Quotient algebras of uniform algebras, J.London Math. Soc. (2) 7 (1973) 31–40. A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes, K.Seip, The Bohnenblust–Hille inequality for homogeneous olynomials is hypercontractive, Ann. of Math. (2) 174 (2011) 485–497. A. Defant, D. Popa, U. Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct.Anal. 259 (1) (2010) 220–242. A. Defant, P. Sevilla-Peris, A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal. 256 (5) (2009)D. Diniz, G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, Lower bounds for the constants in the ohnenblust–Hille inequality: the case of real scalars, Proc. Amer.Math. Soc., in press. U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (3) (1981) 231–283, (1982).[12] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva,M.M. Wolf, Unbounded violations of bipartite Bell inequalities via operator space theory, Comm. Math.Phys. 300 (3) (2010) 715–739. S. Kaijser, Some results in the metric theory of tensor products, Studia Math. 63 (2) (1978) 157–170. H. König, Eigenvalue Distribution of Compact Operators,Oper. Theory Adv. Appl., vol. 16, Birkhäuser Verlag,Basel, 1986. J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math. 1 (1930) 164–174. G.A. Muñoz-Fernández, D. Pellegrino, J.B. Seoane-Sepúlveda, Estimates for the asymptotic behavior of the constants in the Bohnenblust–Hille inequality, Linear Multilinear Algebra 60 (5) (2012) 573–582. D. Pellegrino, J.B. Seoane-Sepúlveda, New upper bounds for the constants in the Bohnenblust–Hille inequality,J. Math. Anal. Appl. 386 (2012) 300–307. A. Pietsch, Eigenvalues and s-Numbers, Cambridge Stud.Adv. Math., vol. 13, Cambridge University Press, Cambridge,1987. H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series: old and new results, J. Anal. 3 (1995) 43–60.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Seoane05_Elsevier.pdf
Size:
140.61 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Seoane05libre.pdf
Size:
148.84 KB
Format:
Adobe Portable Document Format

Collections