Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Global inversion and covering maps on length spaces

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorGutú, Olivia
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T00:15:34Z
dc.date.available2023-06-20T00:15:34Z
dc.date.issued2010
dc.description.abstractIn order to obtain global inversion theorems for mappings between length metric spaces, we investigate sufficient conditions for a local homeomorphism to be a covering map in this context. We also provide an estimate of the domain of invertibility of a local homeomorphism around a point, in terms of a kind of lower scalar derivative. As a consequence, we obtain an invertibility result using an analog of the Hadamard integral condition in the frame of length spaces. Some applications are given to the case of local diffeomorphisms between Banach-Finsler manifolds. Finally, we derive a global inversion theorem for mappings between stratified groups.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipD.G.E.S. (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16215
dc.identifier.doi10.1016/j.na.2010.04.069
dc.identifier.issn0362-546X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0362546X10002877
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42286
dc.issue.number5
dc.journal.titleNonlinear Analysis-Theory Methods & Applications
dc.language.isoeng
dc.page.final1374
dc.page.initial1364
dc.publisherPergamon-Elsevier Science
dc.relation.projectIDMTM2006-03531
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.keywordGlobal inversion
dc.subject.keywordLength spaces
dc.subject.keywordCoverings maps
dc.subject.keywordBanach-Finsler manifolds
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleGlobal inversion and covering maps on length spaces
dc.typejournal article
dc.volume.number73
dcterms.referencesJ. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906) 71-84. P. Lévy, Sur les fonctions des lignes implicites, Bull. Soc. Math. France 48 (1920) 13-27. F. John, On quasi-isometric maps I, Comm. Pure Appl. Math. 21 (1968) 77-110. R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974) 169-183. P. Rabier, On global diffeomorphisms of Euclidean space, Nonlinear Anal. 21 (1993) 925-947. P. Rabier, Ehresmann fibrations and Palais_Smale Conditions for morphism of finsler manifolds, Ann. of Math. 146 (1997) 547-691. S. Nollet, F. Xavier, Global inversion via the Palais_Smale condition, Discrete Contin. Dyn. Syst. 8 (2002) 17-28. [G. Katriel, Mountain-pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 189-209. O. Gutú, J.A. Jaramillo, Global homeomorphisms and covering projections on metric spaces, Math. Ann. 338 (2007) 75-95. O. Gutú, Global inversion theorems via coercive functionals on metric spaces, Nonlinear Anal. 66 (2007) 2688-2697. F.E. Browder, Covering spaces, fiber spaces and local homeomorphism, Duke Math. J. 21 (1954) 329-336. A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. K.H. Neeb, A Cartan_Hadamard theorem for Banach_Finsler manifolds, Geom. Dedicata 95 (2002) 115-156. H. Upmeier, Symmetric Banach manifolds and Jordan c_-algebras, North-Holland Math. Stud. 104 (1985). R.S. Palais, Lusternik_Schnirelman theory on Banach manifolds, Topology 5 (1966) 115-132. B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat. 13 (1975) 79-89. A. Nissenzweig, w_ sequential convergence, Israel J. Math. 22 (1975) 266-272. S. Lang, Fundamentals of Differential Geometry, in: GTM, vol. 191, Springer-Verlag, 1999. N. Arcozzi, D. Morbidelli, A global inverse map theorem and bi-lipschitz maps in the heisenberg group, Annali dell Universitá di Ferrara 52 (2006) 189-197. G.B. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982. M. Gromov, Carnot_Carathéodory spaces seen from within, in: Subriemannian Geometry, in: A. Bellaïche, J. Risler (Eds.), Progress in Math., vol. 144, Verlag, Birkhauser, 1996. V. Magnani, Elements of Geometric Measure Theory on Sub-Riemannian groups, Ph.D. Thesis of Scuola Normale Superiore de Pisa, 2002.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo05.pdf
Size:
346.16 KB
Format:
Adobe Portable Document Format

Collections