Global inversion and covering maps on length spaces
dc.contributor.author | Garrido, M. Isabel | |
dc.contributor.author | Gutú, Olivia | |
dc.contributor.author | Jaramillo Aguado, Jesús Ángel | |
dc.date.accessioned | 2023-06-20T00:15:34Z | |
dc.date.available | 2023-06-20T00:15:34Z | |
dc.date.issued | 2010 | |
dc.description.abstract | In order to obtain global inversion theorems for mappings between length metric spaces, we investigate sufficient conditions for a local homeomorphism to be a covering map in this context. We also provide an estimate of the domain of invertibility of a local homeomorphism around a point, in terms of a kind of lower scalar derivative. As a consequence, we obtain an invertibility result using an analog of the Hadamard integral condition in the frame of length spaces. Some applications are given to the case of local diffeomorphisms between Banach-Finsler manifolds. Finally, we derive a global inversion theorem for mappings between stratified groups. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | D.G.E.S. (Spain) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16215 | |
dc.identifier.doi | 10.1016/j.na.2010.04.069 | |
dc.identifier.issn | 0362-546X | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0362546X10002877 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42286 | |
dc.issue.number | 5 | |
dc.journal.title | Nonlinear Analysis-Theory Methods & Applications | |
dc.language.iso | eng | |
dc.page.final | 1374 | |
dc.page.initial | 1364 | |
dc.publisher | Pergamon-Elsevier Science | |
dc.relation.projectID | MTM2006-03531 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517 | |
dc.subject.keyword | Global inversion | |
dc.subject.keyword | Length spaces | |
dc.subject.keyword | Coverings maps | |
dc.subject.keyword | Banach-Finsler manifolds | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Global inversion and covering maps on length spaces | |
dc.type | journal article | |
dc.volume.number | 73 | |
dcterms.references | J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906) 71-84. P. Lévy, Sur les fonctions des lignes implicites, Bull. Soc. Math. France 48 (1920) 13-27. F. John, On quasi-isometric maps I, Comm. Pure Appl. Math. 21 (1968) 77-110. R. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc. 200 (1974) 169-183. P. Rabier, On global diffeomorphisms of Euclidean space, Nonlinear Anal. 21 (1993) 925-947. P. Rabier, Ehresmann fibrations and Palais_Smale Conditions for morphism of finsler manifolds, Ann. of Math. 146 (1997) 547-691. S. Nollet, F. Xavier, Global inversion via the Palais_Smale condition, Discrete Contin. Dyn. Syst. 8 (2002) 17-28. [G. Katriel, Mountain-pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 189-209. O. Gutú, J.A. Jaramillo, Global homeomorphisms and covering projections on metric spaces, Math. Ann. 338 (2007) 75-95. O. Gutú, Global inversion theorems via coercive functionals on metric spaces, Nonlinear Anal. 66 (2007) 2688-2697. F.E. Browder, Covering spaces, fiber spaces and local homeomorphism, Duke Math. J. 21 (1954) 329-336. A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. K.H. Neeb, A Cartan_Hadamard theorem for Banach_Finsler manifolds, Geom. Dedicata 95 (2002) 115-156. H. Upmeier, Symmetric Banach manifolds and Jordan c_-algebras, North-Holland Math. Stud. 104 (1985). R.S. Palais, Lusternik_Schnirelman theory on Banach manifolds, Topology 5 (1966) 115-132. B. Josefson, Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat. 13 (1975) 79-89. A. Nissenzweig, w_ sequential convergence, Israel J. Math. 22 (1975) 266-272. S. Lang, Fundamentals of Differential Geometry, in: GTM, vol. 191, Springer-Verlag, 1999. N. Arcozzi, D. Morbidelli, A global inverse map theorem and bi-lipschitz maps in the heisenberg group, Annali dell Universitá di Ferrara 52 (2006) 189-197. G.B. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982. M. Gromov, Carnot_Carathéodory spaces seen from within, in: Subriemannian Geometry, in: A. Bellaïche, J. Risler (Eds.), Progress in Math., vol. 144, Verlag, Birkhauser, 1996. V. Magnani, Elements of Geometric Measure Theory on Sub-Riemannian groups, Ph.D. Thesis of Scuola Normale Superiore de Pisa, 2002. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8b6e753b-df15-44ff-8042-74de90b4e3e9 | |
relation.isAuthorOfPublication.latestForDiscovery | 8b6e753b-df15-44ff-8042-74de90b4e3e9 |
Download
Original bundle
1 - 1 of 1