Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Spatial carrier interferometry from M temporal phase shifted interferograms: Squeezing Interferometry

dc.contributor.authorQuiroga Mellado, Juan Antonio
dc.contributor.authorServín Guirado, Manuel
dc.contributor.authorCywiak Garbarcewics, Moisés
dc.contributor.authorMalacara Hernández, Daniel
dc.contributor.authorEstrada, Julio César
dc.date.accessioned2023-06-20T10:37:01Z
dc.date.available2023-06-20T10:37:01Z
dc.date.issued2008-06-23
dc.description© 2008 Optical Society of America. The authors want to acknowledge the support of the Consejo Nacional de Ciencia y Tecnologia de Mexico (CONACYT).
dc.description.abstractIt is well known that having 3 temporal phase shifting (PS) interferograms we do not have many possibilities of using an algorithm with a desired frequency spectrum, detuning, and harmonic robustness. This imposes severe restrictions on the possibilities to demodulate such set of temporal interferograms. It would be nice to apply for example a 7 step PS algorithm to these 3 images in order to have more possibilities to phase demodulate them; even further, it would be even better to apply a quadrature filter having a spatial spread given by a real number to these 3 interferograms. In this paper we propose to do just that; namely we show how to demodulate a set of M-steps phase shifting images with a quadrature filter having a real-number as spatial spread. The interesting thing in this paper is to use a higher than M spread quadrature filter to demodulate our interferograms; in traditional PS interferometry one is stuck to the use of M step phase shifting formula to obtain the searched phase. Using a less than M PS formula is not interesting at all given that we would not use all the available information. The main idea behind the "squeezing" phase shifting method is to re-arrange the information of the M phase shifted fringe patterns in such a way to obtain a single carrier frequency interferogram (a spatio-temporal fringe image) and use any two dimensional quadrature filter to demodulate it. In particular we propose the use of Gabor quadrature filters with a spread given by real-numbers along the spatial coordinates. The Gabor filter may be designed in such way that we may squeeze the frequency response of the filter along any desired spatio-temporal dimension, and obtain better signal to noise demodulation ratio, and better harmonic rejection on the estimated phase.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnologia de México (CONACYT)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22890
dc.identifier.doi10.1364/OE.16.009276
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.16.009276
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50783
dc.issue.number13
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final9283
dc.page.initial9276
dc.publisherThe Optical Society Of America
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptics
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleSpatial carrier interferometry from M temporal phase shifted interferograms: Squeezing Interferometry
dc.typejournal article
dc.volume.number16
dcterms.references1. M. Servín and M. Kujawinska, “Modern fringe pattern analysis in Interferometry,” in Handbook of Optical Engineering, D. Malacara and B. J. Thompson eds., (Marcel Dekker, 2001) Chap 14, 373-422. 2. D. Malacara, M. Servín, and Z. Malacara, Interferogram Analysis for Optical Testing, (CRC Press, Taylor & Francis, second edition, 2005). 3. K. Freischland and C. L. Koliopoulos, “Fourier description of digital phase measuring interferometry,” J. Opt. Soc. Am. A 7, 542-551 (1990). 4. M. Servín, D. Malacara, D. Marroquín, and F. J. Cuevas, “Complex linear filters for phase shifting with very low detuning sensitivity,” J. Mod. Opt. 44, 1269-1278 (1997). 5. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51-60 (1996). 6. M. Takeda, H. Ina, and S. Kobayashi, “Fourier transform methods of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. A 72, 156-160 (1982). 7. K, H. Womack, “Interferometric phase measurement using spatial synchronous detection,” Opt. Eng., 23, 391-395 (1984). 8. J. H. Bruning, D. R. Herriot, J. E. Gallagher, D. P. Rosenfel, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometry for testing optical surfaces and lenses,” Appl. Opt. 13, 2693-2703 (1974).
dspace.entity.typePublication
relation.isAuthorOfPublication1c171089-8e25-448f-bcce-28d030f8f43a
relation.isAuthorOfPublication.latestForDiscovery1c171089-8e25-448f-bcce-28d030f8f43a

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
QuirogaJA37.pdf
Size:
768.01 KB
Format:
Adobe Portable Document Format

Collections