Heuristic optimization algorithms for advertising campaigns

dc.contributor.authorSeco, Álvaro
dc.contributor.authorRubio Díez, Fernando
dc.contributor.authorLópez Barquilla, Natalia
dc.date.accessioned2025-05-19T15:04:31Z
dc.date.available2025-05-19T15:04:31Z
dc.date.issued2025-03-25
dc.description.abstractIn this paper, two optimization problems within the scope of marketing campaign design are studied. In particular, two ad positioning problems are analyzed with the objective of minimizing the cost of all the chosen media while ensuring that a set of constraints is fulfilled. In the first problem, a given minimum number of impressions (views) in each population segment is required to be reached as a constraint. In the second problem, the constraints involve achieving, in each population segment, a given minimum probability that any individual will see the ad at least once. In this second case, media dependencies are defined for each population segment: independence, exclusion, and inclusion. Since both problems are Log-APX-hard, heuristic methods are used to solve them. More specifically, greedy and genetic algorithms, as well as particle swarm optimization, are applied to address these problems. Furthermore, the usefulness of these algorithms is evaluated through concrete case studies using real data on ad prices and views.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipPlan Estatal de Investigación Científica y Técnica y de Innovación
dc.description.statuspub
dc.identifier.citationSeco, Á., López, N., & Rubio, F. (2025). Heuristic optimization algorithms for advertising campaigns. Expert Systems with Applications, 266, 126105.
dc.identifier.doi10.1016/j.eswa.2024.126105
dc.identifier.officialurlhttps://doi.org/10.1016/j.eswa.2024.126105
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0957417424029725
dc.identifier.urihttps://hdl.handle.net/20.500.14352/120217
dc.journal.titleExpert Systems with Applications
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDS2018/TCS-4339
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108528RB-C22/ES/METODOS RIGUROSOS PARA EL DESARROLLO DE SISTEMAS SOFTWARE DE CALIDAD Y FIABILIDAD CERTIFICADAS/
dc.relation.projectIDPID2023-149943OB-I00
dc.rights.accessRightsopen access
dc.subject.keywordMarketing
dc.subject.keywordAdvertisements
dc.subject.keywordOptimization
dc.subject.keywordGenetic algorithms
dc.subject.keywordHeuristic methods
dc.subject.keywordApproximability
dc.subject.keywordNP-complete problems
dc.subject.ucmInformática (Informática)
dc.subject.ucmAudiencia y difusión de los medios
dc.subject.unesco1203 Ciencia de Los Ordenadores
dc.titleHeuristic optimization algorithms for advertising campaigns
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number266
dspace.entity.typePublication
relation.isAuthorOfPublication24d04c3b-f9e3-4ad0-95cb-c28e064f7a03
relation.isAuthorOfPublication008d015f-bd43-44a1-9b03-2b41f22c68d5
relation.isAuthorOfPublication.latestForDiscovery24d04c3b-f9e3-4ad0-95cb-c28e064f7a03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Heuristic_optimization.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format

Collections