Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Impact of device geometry on electron and phonon transport in graphene nanorings

dc.contributor.authorSaiz Bretín, Marta
dc.contributor.authorMedrano Sandonas, L.
dc.contributor.authorGutierrez, R.
dc.contributor.authorCuniberti, G.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-17T13:23:29Z
dc.date.available2023-06-17T13:23:29Z
dc.date.issued2019-04-26
dc.description©2019 American Physical Society Work at Madrid was supported by the Agencia Estatal de Investigacion of Spain (Grants No. MAT2016-75955 and No. MAT2016-63955). This work has also been partly supported by the German Research Foundation (DFG) within the Cluster of Excellence "Center for Advancing Electronics Dresden." We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for providing computational resources.
dc.description.abstractRecent progress in nanostructuring of materials opens up possibilities to achieve more efficient thermoelectric devices. Nanofilms, nanowires, and nanorings may show increased phonon scattering while keeping good electron transport, two of the basic ingredients for designing more efficient thermoelectric systems. Here we argue that graphene nanorings attached to two leads meet these two requirements. Using a density-functional parametrized tight-binding method combined with Green's function technique, we show that the lattice thermal conductance is largely reduced as compared to that of graphene nanoribbons. At the same time, numerical calculations based on the quantum transmission boundary method, combined with an effective transfer matrix method, predict that the electric properties are not considerably deteriorated, leading to an overall remarkable thermoelectric efficiency. We conclude that graphene nanorings can be regarded as promising candidates for nanoscale thermoelectric devices.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipGerman Research Foundation (DFG)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55516
dc.identifier.doi10.1103/PhysRevB.99.165428
dc.identifier.issn2469-9950
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.99.165428
dc.identifier.relatedurlhttps://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13341
dc.issue.number16
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican physical society
dc.relation.projectID(MAT2016-75955; MAT2016-63955)
dc.relation.projectIDCluster of Excellence "Center for Advancing Electronics Dresden"
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordLattice thermal-conductivity
dc.subject.keywordThermoelectric figure
dc.subject.keywordMerit
dc.subject.keywordEnhancement
dc.subject.keywordPerformance
dc.subject.keywordFano
dc.subject.ucmFísica de materiales
dc.subject.ucmFísica del estado sólido
dc.subject.unesco2211 Física del Estado Sólido
dc.titleImpact of device geometry on electron and phonon transport in graphene nanorings
dc.typejournal article
dc.volume.number99
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame221libre.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format

Collections