Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Enriched Semantic Graphs for Extractive Text Summarization

dc.conference.titleConferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2016)
dc.contributor.authorGarcía Sevilla, Antonio Fernando
dc.contributor.authorFernández-Isabel, Alberto
dc.contributor.authorDíaz Esteban, Alberto
dc.date.accessioned2025-01-30T16:32:47Z
dc.date.available2025-01-30T16:32:47Z
dc.date.issued2016-09-08
dc.description.abstractAutomatic extraction of semantic information from unstructured text has always been an important goal of natural language processing. While the best structure for semantic information is still undecided, graphbased representations enjoy a healthy following. Some of these representations are extracted directly from the text and external knowledge, while others are built from linguistic insight, created from the deep analysis of the surface text. In this document a combination of both approaches is outlined, and its application for extractive text summarization is described. A pipeline for this task has been implemented, and its results evaluated against a collection of documents from the DUC2003 competition. Graph construction is fully automatic, and summary creation is based on the clustering of conceptual nodes. Different configurations for the semantic graphs are used and compared, and their fitness for the task discussed.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.isbn978-3-319-44636-3
dc.identifier.officialurlhttps://link.springer.com/chapter/10.1007/978-3-319-44636-3_20
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117403
dc.language.isoeng
dc.page.final226
dc.page.initial217
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-66655-R/ES/INCLUSION DIGITAL, LENGUAJE NATURAL Y COMUNICACION/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordSemantic Graph
dc.subject.keywordInformation Extraction
dc.subject.keywordText Summarization
dc.subject.keywordNatural Language Processing
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleEnriched Semantic Graphs for Extractive Text Summarization
dc.typeconference paper
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublicationb0a639f9-8768-4af7-be19-19194a01f3fe
relation.isAuthorOfPublication97e9fa87-0f3e-48d8-9832-0abd05ecd9c0
relation.isAuthorOfPublication.latestForDiscoveryb0a639f9-8768-4af7-be19-19194a01f3fe

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AFGSevilla_2016a.pdf
Size:
223.71 KB
Format:
Adobe Portable Document Format

Collections