Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Generalized Orbifold Euler Characteristics on the Grothendieck Ring of Varieties with Actions of Finite Groups

dc.contributor.authorGusein-Zade, S. M.
dc.contributor.authorLuengo Velasco, Ignacio
dc.contributor.authorMelle Hernández, Alejandro
dc.date.accessioned2023-06-17T12:32:28Z
dc.date.available2023-06-17T12:32:28Z
dc.date.issued2019-07-11
dc.description.abstractThe notion of the orbifold Euler characteristic came from physics at the end of the 1980s. Coincidence (up to sign) of the orbifold Euler characteristics is a necessary condition for crepant resolutions of orbifolds to be mirror symmetric. There were defined higher order versions of the orbifold Euler characteristic and generalized (“motivic”) versions of them. In a previous paper, the authors defined a notion of the Grothendieck ring K (super index fGr) (sub index 0) (VarC) of varieties with actions of finite groups on which the orbifold Euler characteristic and its higher order versions are homomorphisms to the ring of integers. Here, we define the generalized orbifold Euler characteristic and higher order versions of it as ring homomorphisms from K (super index fGr) (sub index 0) (VarC) to the Grothendieck ring K (sub index 0) (VarC) of complex quasi-projective varieties and give some analogues of the classical Macdonald equations for the generating series of the Euler characteristics of the symmetric products of a space.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipRussian Science Foundation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63201
dc.identifier.doi10.3390/sym11070902
dc.identifier.issn2073-8994
dc.identifier.officialurlhttps://doi.org/10.3390/sym11070902
dc.identifier.relatedurlhttps://www.mdpi.com/2073-8994/11/7/902
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12437
dc.issue.number7
dc.journal.titleSymmetry
dc.language.isoeng
dc.page.initial902
dc.publisherMDPI
dc.relation.projectIDMTM2016-76868-C2-1-P
dc.relation.projectID16-11-10018
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu515.14
dc.subject.keywordactions of finite groups
dc.subject.keywordcomplex quasi-projective varieties
dc.subject.keywordGrothendieck rings
dc.subject.keywordλ-structure
dc.subject.keywordpower structure
dc.subject.keywordMacdonald-type equations
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmTopología
dc.subject.unesco12 Matemáticas
dc.subject.unesco1210 Topología
dc.titleGeneralized Orbifold Euler Characteristics on the Grothendieck Ring of Varieties with Actions of Finite Groups
dc.typejournal article
dc.volume.number11
dcterms.references1. Dixon, L.; Harvey, J.; Vafa, C.; Witten, E. Strings on orbifolds. J. Nucl. Phys. B 1985, 261, 678–686. [CrossRef] 2. Atiyah, M.; Segal, G. On equivariant Euler characteristics. J. Geom. Phys. 1989, 6, 671–677. [CrossRef] 3. Hirzebruch, F.; Höfer, T. On the Euler number of an orbifold. Math. Ann. 1990, 286, 255–260. [CrossRef] 4. Bryan, J.; Fulman, J. Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups. Ann. Comb. 1998, 2, 1–6. [CrossRef] 5. Gusein-Zade, S.M.; Luengo, I.; Melle-Hernández, A. On the power structure over the Grothendieck ring of varieties and its applications. Proc. Steklov Inst. Math. 2007, 258, 53–64. [CrossRef] 6. Wang, W.; Zhou, J. Orbifold Hodge numbers of wreath product orbifolds. J. Geom. Phys. 2001, 38, 152–169. [CrossRef] 7. Gusein-Zade, S.M.; Luengo, I.; Melle-Hernández, A. Higher order generalized Euler characteristics and generating series. J. Geom. Phys. 2015, 95, 137–143. [CrossRef] 8. Tamanoi, H. Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory. Algebr. Geom. Topol. 2001, 1, 115–141. [CrossRef] 9. Gusein-Zade, S.M.; Luengo, I.; Melle-Hernández, A. Grothendieck ring of varieties with actions of finite groups. Proc. Edinb. Math. Soc. 2019. [CrossRef] 10. Gusein-Zade, S.M.; Luengo, I.; Melle-Hernández, A. The Universal Euler Characteristic of V-Manifolds. Funct. Anal. Appl. 2018, 52, 297–307. [CrossRef] 11. Gusein-Zade, S.M.; Luengo, I.; Melle-Hernández, A. A power structure over the Grothendieck ring of varieties. Math. Res. Lett. 2004, 11, 49–57. [CrossRef] 12. Knutson, D. λ-Rings and the Representation Theory of the Symmetric Group; Lecture Notes in Mathematics; Springer: Berlin, Germany; New York, NY, USA, 1973; Volume 308. 13. Bergh, D.; Gorchinskiy, S.; Larsen, M.; Lunts, V. Categorical measures for finite group actions. arXiv 2017, arXiv:1709.00620
dspace.entity.typePublication
relation.isAuthorOfPublication2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce
relation.isAuthorOfPublicationc5f952f6-669f-4e3d-abc8-76d6ac56119b
relation.isAuthorOfPublication.latestForDiscovery2e3a1e05-10b8-4ea5-9fcc-b53bbb0168ce

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
symmetry-11-00902-v2.pdf
Size:
298.91 KB
Format:
Adobe Portable Document Format

Collections