Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Sequentially generated states for the study of two-dimensional systems

dc.contributor.authorBañuls, M.C.
dc.contributor.authorPérez García, David
dc.contributor.authorWolf, M.M.
dc.contributor.authorVerstraete, F.
dc.contributor.authorCirac, J.I.
dc.date.accessioned2023-06-20T09:45:29Z
dc.date.available2023-06-20T09:45:29Z
dc.date.issued2008
dc.description.abstractMatrix product states can be defined as the family of quantum states that can be sequentially generated in a one-dimensional system [Schon et al., Phys. Rev. Lett. 95, 110503 (2005)]. We introduce a family of states that extends this definition to two dimensions. Like in matrix product states, expectation values of few body observables can be efficiently evaluated and, for the case of translationally invariant systems, the correlation functions decay exponentially with the distance. We show that such states are a subclass of projected entangled pair states and investigate their suitability for approximating the ground states of local Hamiltonians.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipEU Strep Compas
dc.description.sponsorshipDFG
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17824
dc.identifier.doihttp//dx.doi.org/10.1103/PhysRevA.77.052306
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://link.aps.org/doi/10.1103/PhysRevA.77.052306
dc.identifier.relatedurlhttp://www.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50311
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.page.final1
dc.page.initial052306
dc.publisherAmerican Physical Society
dc.relation.projectID(MTM2005-00082)
dc.relation.projectIDExcellence Cluster MAP
dc.relation.projectIDFOR 635
dc.rights.accessRightsopen access
dc.subject.cdu530.145
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleSequentially generated states for the study of two-dimensional systems
dc.typejournal article
dc.volume.number77
dcterms.referencesS. R. White, Phys. Rev. Lett. 69, 2863 (1992) D. Perez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum Inf. Comput. 7, 401 (2007). G. Vidal, Phys. Rev. Lett. 91, 147902 (2003). F. Verstraete and J. I. Cirac, e-print arXiv:cond-mat/0407066. C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf, Phys. Rev. Lett. 95, 110503 (2005). N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 98, 140506 (2007). V. Murg, F. Verstraete, and J. I. Cirac, Phys. Rev. A 75, 033605 (2007). J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, e-print arXiv:cond-mat/0703788v3. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007). S. Anders, M. B. Plenio, W. Dür, F. Verstraete, and H.-J. Briegel, Phys. Rev. Lett. 97, 107206 (2006). S. Moukouri, Phys. Rev. B 70, 014403 (2004). N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 100, 040501 (2008). C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett. 100, 130501 (2008). M. B. Hastings, Phys. Rev. B 76, 201102(R) (2007). U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004). F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev. Lett. 93, 207204 (2004). F. Verstraete, M. M. Wolf, D. Perez-García, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006). F. Verstraete and J. I. Cirac, Phys. Rev. A 70, 060302(R) (2004). D. Pérez-García, F. Verstraete, J. I. Cirac, and M. M. Wolf, e-print arXiv:0707.2260v1. H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001). The scaling depends exponentially on the number of local operators applied, so that the calculation is feasible as long as this number is small. V. Murg (private communication). MPSs have bond dimension D, and unitaries act on M+1 sites, so that dM=D. G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003). M. B. Hastings, Phys. Rev. B 73, 085115 (2006). M. B. Hastings, Phys. Rev. B 76, 035114 (2007). J. Eisert, Phys. Rev. Lett. 97, 260501 (2006). A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PerezGarcia26.pdf
Size:
210.88 KB
Format:
Adobe Portable Document Format

Collections