Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorKersner, R.
dc.date.accessioned2023-06-21T02:02:15Z
dc.date.available2023-06-21T02:02:15Z
dc.date.issued1987
dc.description.abstractThe main result of the paper is the uniqueness of nonnegative solutions of the Cauchy problem and of the first and mixed boundary value problems for a class of degenerate parabolic equations which includes the model equation ut=(um)xx+(un)x, where m≥1 and n>0. In particular, n is allowed to be smaller than one. The proof is based on a refined test function argument. The condition that u be nonnegative is crucial, but the restriction to one space variable is not.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16390
dc.identifier.doi10.1016/0022-0396(87)90125-2
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022039687901252
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64664
dc.issue.number3
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final403
dc.page.initial368
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.keywordDirichlet boundary conditions
dc.subject.keywordinitial data
dc.subject.keywordinfiltration
dc.subject.keywordevaporation
dc.subject.keywordporous medium
dc.subject.keywordexistence of limit solutions
dc.subject.keywordweak solutions
dc.subject.keywordmodulus of continuity
dc.subject.keyworduniqueness
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium
dc.typejournal article
dc.volume.number69
dcterms.referencesD. G. ARONSON, Regularily properties of flows through porous media. SIAM J. Appl.Math. 17 (1969), 461-467. D. G. ARONSON. M, G, CRANDALL, AND L A. PELETIER, Stabilization of solutions of a degenerate nonlinear diffusion prob1em, Nonlinear Anal. 6 (1982), 1001--1022. J. BEAR. "Dynamics of Fluids in Porous Media" Elsevier, New York, 1971. PH. BENILAN. On the equation u = (u)xx + (u)x, unpublished. PH, BENILAN AND H. TOURÉ, Sur l’equation généra1e u, =(u)xx -  (u)x. + v, C R. Acad.Sci. Paris Sér. J Math. 299 (1984), 919-922. PH. BENILAN, "Evolution Equations and Accretive Operators," Lectures Notes, University of Kenlucky, 1981. PH. BENILAN AND M. G. CRANDALL, The continuous depcndence on  of solutions of u- (u) = 0, Indialla Univ. Math, J. 30 (1981), 162-J 77. J. I.DíAZ, Solutions with compact support for some degenerate parabolic problems, Nonlinear Anal. 3 (1971),831-847. E. DIBENEDETTO, Continuity of weak sollltions to a general porous media equation,Indiana Univ. Math . J. 32 (1983), 83-119. E. DIBENEDETTO, A boundary modulus of continuity for a class of singular parabolic equations, to appear. M. I. FREIDLIN, Existence in the large of smooth solutions of' degenerate quasilinear equations, Mat. Sb. 78 (1969), 332-348; Math. USSR-Sb. 7 (1969), 323-339. B. H. GILDING, Hölder continuity of solutions of parabolic equations, J. London Math. Soc. 13 (1976),103-106. B. H. GILDING, A nonlincar degenerate parabolic equation, Ann Scuola Norm. Sup. Pisa 4(1977), 393-432. B. H. GILDING, Properties of solutions of an equation in the theory of infiltration, Arch.Rational Mech. Anal. 65 (1977),203-225. B. H. GILDING AND L. A. PELETlER, The Cauchy problem for an equation in the theory of infiltration, Arch. Rational Mech. Anal. 61 (1976), 127-140. J. GONCERZEWICZ. On the existence of weak solutions of a boundary value problem for a certain degenerate parabolic equation,Bull.Acad.Polon.Sci.Sér.Sci.Tech.27(1979),449-454. A. S. KALASHNIKOV, On the differential properties of generalized solitions of equations of the nonsteady-stale filtralion type, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 29 (1979),62-68. A. S. KALASHNIKOV, On the character of the propagation of perturbation in processed described by quasilinear degenerate parabolic equations,in"Proccedings of Seminars Dedicated to I. G. Petrovskogo,pp.135-144,Otdel'nyiottisk, Moscow,1975. R. KERSNER, Degenerate parabolic equations with general nonlinearities, Nonlinear Anal.4 (1980), 1043-1061. R. KERSNER, Localization conditions for thermal perturbation in a scmiboundcd moving medium with absorption, Vestnik Moskov. Univ. Mat. 31 (1976), 52-58. B. F. KNERR, The porous medium equation in one dimension, Trans. Amer. Math. Soc.234 ([977), 381--415. S. N. KRUZHKOV, Results on the character of the regu1arity of solutions of parabolic equations and some of their applications, Mat. Zametki 6 (1969), 295•-300. R. J. KUNZE AND D. KIRHAM, Simplified accounting for membrane indedance in capillary conductivity determinations, Soil Sci. Soc. Amer. Proc.26 1962),421-426. O. A. LADYZHENSKAYA, V. A. SOLONNIKOV, AND N. N. URAL'CEVA, "Linear and Quasilinear Equations of Parabolic Type," Transl. of Math. Monogr., Vol. 23, Amer.Math. Soc., Providencc, Rl, 1968. B. J. LURCIER, On Sobolev regularizations of hyperbolic conservation laws, Comm. Partial Diflerential Eqations l0 (1985), 1-28. T. NANBU, The Cauchy problem for quasilinear degenerate parabolic equations, Math.Rep. Kyushu Univ. 11(1977),83-96. O. A. OLEINIK AND T. D. VENTZEL, The first boundary value problem and the Cauchy problem for the quasilinear equation of parabolic type, Mal. Sb. 41 (1957), 105-128. O. A. OLEINIK, A. S. KALASHNIKOV, AND C. YUI-LIN, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration, Izv. Akad. Navk. SSSR. Soc. Mat. 22 (1958), 667-704. L. A. PELETIER, The porous media equation, in "Applieations of Nonlinear Ana1ysis in the Physics Sciences" (H. Amman, Ed,), pp. 229-241, Pitman, London, 1981. J. R. PHILIP, Evaporation, and moisture and heat fields in the soil, J. Meterology 14(1957),354-366. J. R. PHILIP, The theory of infiltratation, Adv, Hydrosci. 5 (1969), 215-296. M. E. ROSE, "Numerieal Methods for a General Class of Porous Medium Equations,"Argone National Laboratory Report, Arganne, II, 1980. P. SACKS, "Existence and Regularity of Solutions of Inhomogeneous Porous Medium Type Equations," T.S.R. #2214, MRC, Madison, WI, 1981. D. SWARTZENDRUBER, The flow of water in unsatured soi1s, in "F1ow Thraugh Parous Media" (R. J. M. Dewiest, Ed.), pp. 215-292, Academic Press, New York, 1969. A. I. VOL'PERT AND S. I. HUDJAEV, Cauchy's problem for degenerate second order quasilinear parabolic equations, Mat.Sb.78 1969),374-396;Math.USSR-Sb.7 1969), 365-387. DEQUAN WU, Uniqueness of the weak solution of quasilinear degenerate parabolic equations, Acta Math. Sinica 25 (1982),61-75. ZHUOQUN WU, An application of the theory of nonlinear semi-groups to the Cauchy problem for quasi-linear degenerate Parabolic equation of second order, to appear. ZHUOQUN WU AND JUNNING ZHAO, The first boundary value problem for quasilinear degenerate parabolic equations of second order in several space variables, Chinese Ann. Math. Ser. B 4 (1983), 57-76. W. P. ZIEMER, Interior and boundary continuity of weak solutions of degenerate parabolic equations,Trans. Amer. Math. Soc. 271, 2 (1982),733-748.
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
127.pdf
Size:
914.52 KB
Format:
Adobe Portable Document Format

Collections