Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the very weak solvability of the beam equation

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.date.accessioned2023-06-20T00:10:59Z
dc.date.available2023-06-20T00:10:59Z
dc.date.issued2011
dc.description.abstractWe get some necessary and sufficient conditions for the very weak solvability of the beam equation stated in terms of powers of the distance to the boundary, accordingly to the boundary condition under consideration. We get a L(1)-estimate by using an abstract result due to Crandall and Tartar. Applications to some nonlinear perturbed equations and to the eventual positivity of the solution of the parabolic problems are also given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipDGISPI (Spain)
dc.description.sponsorshipUCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15036
dc.identifier.doi10.1007/s13398-011-0017-7
dc.identifier.issn1578-7303
dc.identifier.officialurlhttp://www.springerlink.com/content/1578-7303/
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42146
dc.issue.number1
dc.journal.titleRevista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A: Matemáticas
dc.language.isoeng
dc.page.final172
dc.page.initial167
dc.publisherSpringer
dc.relation.projectIDFIRST (238702)
dc.relation.projectIDMTM200806208
dc.relation.projectID910480
dc.rights.accessRightsopen access
dc.subject.cdu512.644
dc.subject.keywordboundary
dc.subject.keywordorder
dc.subject.keyworddistance
dc.subject.keywordrespect
dc.subject.keywordBeam equation
dc.subject.keywordVery weak solutions
dc.subject.keywordAccretive operators
dc.subject.keywordMaximum principle
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleOn the very weak solvability of the beam equation
dc.typejournal article
dc.volume.number105
dcterms.referencesBachar I., Māagli H., Masmoudi S., Zribi M.: Estimates for the Green function and singular solutions for polyharmonic nonlinear equation. Abstr. Appl. Anal. 2003(12), 715–741 (2003) Benilan, Ph., Crandall, M.G., Pazy, A.: Nonlinear Evolution Governed by Accretive Operators. Book Manuscript, Besançon, France (2001) Bernis F.: On some nonlinear singular boundary value problems of higher order. Nonlinear Anal. Theory Methods Appl. 26(6), 1061–1078 (1996) Boggio T.: Sulle funzioni di Green d’ordine m. Rendiconti del Circolo Matematico di Palermo Serie II 20, 97–135 (1905) Brezis, H.: Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1972) Brezis H., Cazenave T., Martel Y., Ramiandrisoa A.: Blow up for u t −Δu = g(u) revisited. Adv. Differ. Equ. 1, 73–90 (1996) Brezis H., Cabré X.: Some simple nonlinear PDE’s without solutions. Boll. Unione Mat. Ital. 1-B, 223–262 (1998) Chow S.N., Dunninger D.R., Lasota A.: A maximum principle for fourth order ordinary differential equations. J. Differ. Equ. 14, 101–105 (1973) Crandall M.G., Tartar L.: Some relations between nonexpansive and order preserving maps. Proc. AMS 78(3), 385–390 (1980) Díaz, J.I.: Very weak solutions of the beam and other higher order equations, Rev. Real Academia de Ciencias de Zaragoza (2011, to appear) Díaz J.I., Rakotoson J.M.: On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary. J. Funct. Anal. 257, 807–831 (2009) Díaz J.I., Rakotoson J.M.: On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete Continuous Dyn. Syst. 27(3), 1037–1058 (2010) Díaz, J.I., Hernandez, J., Rakotoson, J.M.: Positive very weak solutions of singular semilinear problems (2011, in preparation) Duffin R.J.: On a question of Hadamard concerning super-biharmonic functions. J. Math. Phys. 27, 253–258 (1949) Gazzola F., Grunau H.C.: Some new properties of biharmonic heat kernels. Nonlinear Anal. 70, 2965–2973 (2009) Gupta C.P.: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26, 289–305 (1988) Hadamard J.: Memoire sur le probleme d’analyse relatif a l’equilibre des plaques elastiques incastrees. Memoires presentées par divers savants a l’Academie des Sciences 33, 1–128 (1908) Kawohl B., Sweers G.: On ‘anti’-eigenvalues for elliptic systems and a question of McKenna and Walter. Indiana U. Math. J. 51, 1023–1040 (2002) McKenna P.J., Walter W.: Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98, 167–177 (1987) Schröder, J.: Zusammenhängende Mengen inverspositiver Differentialoperatoren vierter Ordnung. Math. Z. 96, 89–110 (1967) (in German) Stakgold I.: Green’s Functions and Boundary Value Problems. Wiley, New York (1998) Yao Q., Li Y.: Solution and positive solution to nonlinear cantilever beam equations. J. Southwest Jiaotong Univ. Engl. Ed. 16, 51–54 (2008)
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
04.pdf
Size:
171.72 KB
Format:
Adobe Portable Document Format

Collections