Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Heegaard diagrams for closed 4-manifolds

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

1977

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Academic Press
Citations
Google Scholar

Citation

Abstract

Let W4=H0∪λH1∪μH2∪γH3∪H4 be a handle decomposition of a closed, orientable PL 4-manifold. Let M4=H0∪λH1∪μH2 and let N4=N4(γ)=γH3∪H4=γ#(S1×B3). Then W4 is M4∪N4, identified along ∂M4=∂N4=γ#(S1×S2). The first observation in this paper is that W4 does not depend upon the method of attaching N4, as a consequence of a theorem of F. Laudenbach and V. Poénaru [Bull. Soc. Math. France 100 (1972), 337–344;], who showed (implicitly) that the homotopy group of ∂N4 is generated by maps which extend to N4. Dually, W4 does not depend upon the method of attaching H0∪λH1≅N4(λ). Hence W4 depends only on the cobordism C(λ,γ) from λ#(S1×S2) to γ#(S1×S2) defined by the 2-handles. The author calls (W4,C(λ,γ)) a Heegaard splitting of W4. The associated Heegaard diagram is a pair (λ#S1×S2,w) where w is a framed link in λ#S1×S2. It is noted that an arbitrary pair (λ#S1×S2,w) need not be a Heegaard diagram for a 4-manifold. Two diagrams are equivalent if there is a homeomorphism of pairs which preserves the framings. Moves are given which relate any two Heegaard diagrams for the same 4-manifold. The completeness of these moves is proved in Theorem 3 (and also Theorem 3′). A concept of a dual diagram is introduced. It is not known whether each Heegaard diagram is geometrically realizable as the diagram for some closed 4-manifold.

Research Projects

Organizational Units

Journal Issue

Description

Proceedings of the Georgia Topology Conference held in Athens, Ga., August 1–12, 1977.

UCM subjects

Unesco subjects

Keywords