Thermal growth and structural and optical characterization of indium tin oxide nanopyramids, nanoislands, and tubes
Loading...
Full text at PDC
Publication date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citation
Abstract
In-doped SnO_2 microtubes as well as Sn-doped In_2O_3 (ITO) nano- and microislands have been grown by thermal treatment of compacted SnO_2-In_2O powders under argon flow at 1350 degrees C in a catalyst-free process. The SnO_2 tubes contain about 1 at. % of In, even when the In content in the starting mixture was as high as 52 at. %. However, the ITO nanoislands and nanopyramids, grown preferentially on the faces and edges of the tubes, present an In content up to six times higher than the tubes. Spatially resolved cathodoluminescence shows a higher emission from the Sn-rich structures, so that the In-rich ITO nanoislands show dark contrast in the CL images. CL spectra show that the main emission bands in both, Sn-rich and In-rich, structures, are related to oxygen deficiency. X-ray photoelectron spectroscopy shows differences between the tubes and the nanoislands in the O (1s) spectral region. In particular, a component at 531.9 eV of the O (1s) signal appears enhanced in the In-rich islands.
Description
© 2008 American Institute of Physics
This work was supported by MEC (Project No. MAT2006-01259).