Human-Intelligent Trajectory Optimization for Robotic Manipulators with Hybrid PSO-PS Algorithm

dc.contributor.authorPeñacoba-Yagüe, Mario
dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2025-11-19T14:05:57Z
dc.date.available2025-11-19T14:05:57Z
dc.date.issued2026-01-01
dc.description.abstractIndustry 5.0 is driving a new era in industrial automation, where the collaboration between artificial intelligence (AI) and human supervision enables the development of smarter, more adaptive, and more efficient systems. Robotic trajectory generation is a clear example of this new paradigm. Metaheuristic techniques help automatically generate optimized trajectories, thereby improving operational efficiency. However, optimizing trajectories using AI alone also presents limitations. Starting from random trajectories, the optimization process becomes computationally expensive, especially in complex environments. In this context, initial input from human experts plays a crucial role: expert-defined trajectories provide structured, feasible, and contextual starting points that guide AI more effectively toward high-quality solutions. Therefore, this work proposes a novel human-guided trajectory optimization algorithm. In this way, human knowledge, Particle Swarm Optimization (PSO), and Pattern Search (PS) are efficiently combined. The results demonstrate that this approach significantly improves robotic system performance, achieving cycle time reductions of up to 16.69% compared to expert-defined trajectories. This approach establishes a solid framework for intelligent automation in Industry 5.0, promoting the development of more efficient, sustainable, and adaptive robotic systems.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationPeñacoba Yagüe, M., Sierra-Garcia, J. E., & Santos, M. (2026) Human-Intelligent Trajectory Optimization for Robotic Manipulators with Hybrid Pso-Ps Algorithm. Advanced Engineering Informatics, vol 69, part B, 103941.
dc.identifier.doihttps://doi.org/10.1016/j.aei.2025.103941
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S1474034625008341?ssrnid=5231929&dgcid=SSRN_redirect_SD
dc.identifier.urihttps://hdl.handle.net/20.500.14352/126251
dc.issue.number103941
dc.journal.titleAdvanced Engineering Informatics
dc.language.isoeng
dc.page.final22
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDManibot European project number 101120823.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordHuman-AI collaboration
dc.subject.keywordTrajectory optimization
dc.subject.keywordHybrid PSO-PS algorithm
dc.subject.keywordDigital twin
dc.subject.keywordSmart robotics
dc.subject.keywordIndustry 5.0
dc.subject.keywordIntelligent industrial automation
dc.subject.ucmRobótica
dc.subject.unesco3310.01 Equipo Industrial
dc.titleHuman-Intelligent Trajectory Optimization for Robotic Manipulators with Hybrid PSO-PS Algorithm
dc.typejournal article
dc.volume.number69
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Human-Intelligent_Trajectory_Optimization.pdf
Size:
9.52 MB
Format:
Adobe Portable Document Format

Collections