Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep variational models for collaborative filtering-based recommender systems

dc.contributor.authorBobadilla, Jesús
dc.contributor.authorOrtega, Fernando
dc.contributor.authorGutiérrez, Abraham
dc.contributor.authorGonzález Prieto, José Ángel
dc.date.accessioned2023-06-22T12:32:20Z
dc.date.available2023-06-22T12:32:20Z
dc.date.issued2022-12-09
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractDeep learning provides accurate collaborative filtering models to improve recommender system results. Deep matrix factorization and their related collaborative neural networks are the state of the art in the field; nevertheless, both models lack the necessary stochasticity to create the robust, continuous, and structured latent spaces that variational autoencoders exhibit. On the other hand, data augmentation through variational autoencoder does not provide accurate results in the collaborative filtering field due to the high sparsity of recommender systems. Our proposed models apply the variational concept to inject stochasticity in the latent space of the deep architecture, introducing the variational technique in the neural collaborative filtering field. This method does not depend on the particular model used to generate the latent representation. In this way, this approach can be applied as a plugin to any current and future specific models. The proposed models have been tested using four representative open datasets, three different quality measures, and state-of-the-art baselines. The results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect. Additionally, a framework is provided to enable the reproducibility of the conducted experiments.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/75976
dc.identifier.citationBobadilla, J., Ortega, F., Gutiérrez, A. & González Prieto, J. Á. «Deep Variational Models for Collaborative Filtering-Based Recommender Systems». Neural Computing and Applications, vol. 35, n.o 10, abril de 2023, pp. 7817-31. DOI.org (Crossref), https://doi.org/10.1007/s00521-022-08088-2.
dc.identifier.doi10.1007/s00521-022-08088-2
dc.identifier.issn0941-0643
dc.identifier.officialurlhttps://doi.org/10.1007/s00521-022-08088-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/72782
dc.journal.titleNeural Computing and Applications
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.projectIDPID2019-106493RB-I00
dc.relation.projectIDPR27/21-029
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordRecommender systems
dc.subject.keywordCollaborative filtering
dc.subject.keywordVariational enrichment
dc.subject.keywordDeep learning
dc.subject.ucmInformática (Informática)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco12 Matemáticas
dc.titleDeep variational models for collaborative filtering-based recommender systemsen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationc3011bfd-5025-4e49-8f0e-e16ea76da35c
relation.isAuthorOfPublication.latestForDiscoveryc3011bfd-5025-4e49-8f0e-e16ea76da35c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00521-022-08088-2.pdf
Size:
2.29 MB
Format:
Adobe Portable Document Format

Collections