Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat
dc.contributor.author | Fernández Pérez, Luis Antonio | |
dc.contributor.author | Gordillo Guerrero, A. | |
dc.contributor.author | Martín Mayor, Víctor | |
dc.contributor.author | Ruiz Lorenzo, J. J. | |
dc.date.accessioned | 2023-06-20T04:13:27Z | |
dc.date.available | 2023-06-20T04:13:27Z | |
dc.date.issued | 2009-11-06 | |
dc.description | © 2009 The American Physical Society. We have been partly supported through Research Contracts No. FIS2006-08533-C03, No. FIS2007-60977 MICINN, Spain, and No. GR58/08, 910383 Banco de Santander-UCM. The simulations for this work were performed at BIFI. | |
dc.description.abstract | A microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Banco de Santander-UCM | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/37859 | |
dc.identifier.doi | 10.1103/PhysRevE.80.051105 | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.officialurl | http://doi.org/10.1103/PhysRevE.80.051105 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/45061 | |
dc.issue.number | 5 | |
dc.journal.title | Physical review E | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FIS2006-08533-C03 | |
dc.relation.projectID | FIS2007-60977 | |
dc.relation.projectID | GR58/08 | |
dc.relation.projectID | 910383 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Antiferromagnetic RP(2) model | |
dc.subject.keyword | Monte-Carlo simulations | |
dc.subject.keyword | State Potts-model | |
dc.subject.keyword | 3 dimensions | |
dc.subject.keyword | milticritical point | |
dc.subject.keyword | Critical exponents | |
dc.subject.keyword | Ising-model | |
dc.subject.keyword | Renormalization | |
dc.subject.keyword | Temperature | |
dc.subject.keyword | Ensemble | |
dc.subject.ucm | Física (Física) | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.unesco | 22 Física | |
dc.title | Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat | |
dc.type | journal article | |
dc.volume.number | 80 | |
dcterms.references | 1) Depending on context, sometimes the grand-canonical and canonical ensembles are on the same relative position than the canonical and microcanonical ones. 2) W. Janke, Nucl. Phys. B: Proc. Suppl., 63, 631, 1998. -- Similar ideas, although less explicit in their use of a microcanonical language, were developed in M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B, 34, 1841, 1986 -- J. Lee, J. M. Kosterlitz, Phys. Rev. Lett., 65, 137, 1990. 3) V. Martín-Mayor, Phys. Rev. Lett., 98, 137207, 2007. 4) L. A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J. J. Ruiz-Lorenzo, Phys. Rev. Lett., 100, 057201, 2008. 5) D. H. E. Gross, Microcanonical Thermodynamics: Phase Transitions in “Small” Systems, Lectures Notes in Physics, Vol. 66, (World Scientific, Singapore), 2001. 6) R. Lustig, J. Chem. Phys., 109, 8816, 1998. 7) K. Binder, Z. Phys. B, 43, 119, 1981. 8) M. N. Barber, in Phase Transitions and Critical Phenomena, 8, edited by C. Domb and J. L. Lebowitz (Academic Press, New York), 1983. 9) Finite Size Scaling and Numerical Simulations of Statistical Systems, edited by V. Privman (World Scientific, Singapore), 1990. 10) D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd ed. (World Scientific, Singapore), 2005. 10) M. E. Fisher, Phys. Rev., 176, 257, 1968. 12) V. Dohm, J. Phys. C, 7, L174, 1974. 13) R. Kenna, H.-P. Hsu, C. von Ferber, J. Stat. Mech.: Theory Exp., 2008, L10002, 2008. 14) R. C. Desai, D. W. Heermann, K. Binder, J. Stat. Phys., 53, 795, 1988. 15) M. Kastner, M. Promberger, A. Hüller, J. Stat. Phys., 99, 1251, 2000. 16) A. D. Bruce, N. B. Wilding, Phys. Rev. E, 60, 3748, 1999. 17) M. Kastner, M. Promberger, J. Stat. Phys., 103, 893, 2001. 18) H. Behringer, M. Pleimling, Phys. Rev. E, 74, 011108, 2006. 19) A. Tröster, Phys. Rev. Lett., 100, 140602, 2008. 20) S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, A. D. Sokal, Phys. Rev. Lett., 74, 2969, 1995. 21) F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B, 210, 1982. 22) M. P. Nightingale, Physica A, 83, 561, 1975. 23) H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Phys. Lett. B, 378, 207, 1996 -- ibid., 387, 125, 1996 -- ibid., Nucl. Phys. B, 483, 707, 1997. 24) M. P. M. den Nijs, J. Phys. A, 12, 1857, 1979 -- B. Nienhuis, E. K. Riedel, M. Schick, ibid., 13, L189, 1980. 25) M. Nauenberg, D. J. Scalapino, Phys. Rev. Lett., 44, 837, 1980 -- J. L. Cardy, M. Nauenberg, D. J. Scalapino, Phys. Rev. B, 22, 2560, 1980. 26) J. L. Black, V. J. Emery, Phys. Rev. B, 23, 429, 1981. 27) R. Kenna, D. A. Johnston, W. Janke, Phys. Rev. Lett., 96, 115701, 2006 -- ibid., 97, 155702, 2006. 28) J. Salas, A. D. Sokal, J. Stat. Phys., 88, 567, 1997. 29) S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys. Lett. B, 195, 216, 1987. 30) M. Fukugita, H. Mino, M. Okawa, A. Ukawa, J. Phys. A, 23, L561, 1990. 31) F. Wu, Rev. Mod. Phys., 54, 235, 1982. 32) M. Hasenbusch, K. Pinn, J. Phys. A, 31, 6157, 1998. 33) M. Hasenbusch, K. Pinn, J. Phys. A, 31, 6157, 1998. 34) H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo, J. Phys. A, 32, 1, 1999. 35) A. Pelissetto, E. Vicari, Phys. Rep., 368, 549, 2002. 36) M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. E, 65, 066127, 2002. 37) R. J. Baxter, J. Phys. C, 6, L445, 1973. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 146096b1-5825-4230-8ad9-b2dad468673b | |
relation.isAuthorOfPublication | 061118c0-eadf-4ee3-8897-2c9b65a6df66 | |
relation.isAuthorOfPublication.latestForDiscovery | 146096b1-5825-4230-8ad9-b2dad468673b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- FernándezPérezLuisAntonio16LIBRE.pdf
- Size:
- 473.71 KB
- Format:
- Adobe Portable Document Format