Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat

dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorGordillo Guerrero, A.
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorRuiz Lorenzo, J. J.
dc.date.accessioned2023-06-20T04:13:27Z
dc.date.available2023-06-20T04:13:27Z
dc.date.issued2009-11-06
dc.description© 2009 The American Physical Society. We have been partly supported through Research Contracts No. FIS2006-08533-C03, No. FIS2007-60977 MICINN, Spain, and No. GR58/08, 910383 Banco de Santander-UCM. The simulations for this work were performed at BIFI.
dc.description.abstractA microcanonical finite-size ansatz in terms of quantities measurable in a finite lattice allows extending phenomenological renormalization the so-called quotients method to the microcanonical ensemble. The ansatz is tested numerically in two models where the canonical specific heat diverges at criticality, thus implying Fisher renormalization of the critical exponents: the three-dimensional ferromagnetic Ising model and the two-dimensional four-state Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows simulating systems as large as L = 1024 Potts or L= 128 (Ising). The quotients method provides accurate determinations of the anomalous dimension, η, and of the (Fisher-renormalized) thermal ν exponent. While in the Ising model the numerical agreement with our theoretical expectations is very good, in the Potts case, we need to carefully incorporate logarithmic corrections to the microcanonical ansatz in order to rationalize our data.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipBanco de Santander-UCM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/37859
dc.identifier.doi10.1103/PhysRevE.80.051105
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://doi.org/10.1103/PhysRevE.80.051105
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45061
dc.issue.number5
dc.journal.titlePhysical review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2006-08533-C03
dc.relation.projectIDFIS2007-60977
dc.relation.projectIDGR58/08
dc.relation.projectID910383
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.cdu51-73
dc.subject.keywordAntiferromagnetic RP(2) model
dc.subject.keywordMonte-Carlo simulations
dc.subject.keywordState Potts-model
dc.subject.keyword3 dimensions
dc.subject.keywordmilticritical point
dc.subject.keywordCritical exponents
dc.subject.keywordIsing-model
dc.subject.keywordRenormalization
dc.subject.keywordTemperature
dc.subject.keywordEnsemble
dc.subject.ucmFísica (Física)
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.unesco22 Física
dc.titleMicrocanonical finite-size scaling in second-order phase transitions with diverging specific heat
dc.typejournal article
dc.volume.number80
dcterms.references1) Depending on context, sometimes the grand-canonical and canonical ensembles are on the same relative position than the canonical and microcanonical ones. 2) W. Janke, Nucl. Phys. B: Proc. Suppl., 63, 631, 1998. -- Similar ideas, although less explicit in their use of a microcanonical language, were developed in M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B, 34, 1841, 1986 -- J. Lee, J. M. Kosterlitz, Phys. Rev. Lett., 65, 137, 1990. 3) V. Martín-Mayor, Phys. Rev. Lett., 98, 137207, 2007. 4) L. A. Fernández, A. Gordillo-Guerrero, V. Martín-Mayor, J. J. Ruiz-Lorenzo, Phys. Rev. Lett., 100, 057201, 2008. 5) D. H. E. Gross, Microcanonical Thermodynamics: Phase Transitions in “Small” Systems, Lectures Notes in Physics, Vol. 66, (World Scientific, Singapore), 2001. 6) R. Lustig, J. Chem. Phys., 109, 8816, 1998. 7) K. Binder, Z. Phys. B, 43, 119, 1981. 8) M. N. Barber, in Phase Transitions and Critical Phenomena, 8, edited by C. Domb and J. L. Lebowitz (Academic Press, New York), 1983. 9) Finite Size Scaling and Numerical Simulations of Statistical Systems, edited by V. Privman (World Scientific, Singapore), 1990. 10) D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd ed. (World Scientific, Singapore), 2005. 10) M. E. Fisher, Phys. Rev., 176, 257, 1968. 12) V. Dohm, J. Phys. C, 7, L174, 1974. 13) R. Kenna, H.-P. Hsu, C. von Ferber, J. Stat. Mech.: Theory Exp., 2008, L10002, 2008. 14) R. C. Desai, D. W. Heermann, K. Binder, J. Stat. Phys., 53, 795, 1988. 15) M. Kastner, M. Promberger, A. Hüller, J. Stat. Phys., 99, 1251, 2000. 16) A. D. Bruce, N. B. Wilding, Phys. Rev. E, 60, 3748, 1999. 17) M. Kastner, M. Promberger, J. Stat. Phys., 103, 893, 2001. 18) H. Behringer, M. Pleimling, Phys. Rev. E, 74, 011108, 2006. 19) A. Tröster, Phys. Rev. Lett., 100, 140602, 2008. 20) S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, A. D. Sokal, Phys. Rev. Lett., 74, 2969, 1995. 21) F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B, 210, 1982. 22) M. P. Nightingale, Physica A, 83, 561, 1975. 23) H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, Phys. Lett. B, 378, 207, 1996 -- ibid., 387, 125, 1996 -- ibid., Nucl. Phys. B, 483, 707, 1997. 24) M. P. M. den Nijs, J. Phys. A, 12, 1857, 1979 -- B. Nienhuis, E. K. Riedel, M. Schick, ibid., 13, L189, 1980. 25) M. Nauenberg, D. J. Scalapino, Phys. Rev. Lett., 44, 837, 1980 -- J. L. Cardy, M. Nauenberg, D. J. Scalapino, Phys. Rev. B, 22, 2560, 1980. 26) J. L. Black, V. J. Emery, Phys. Rev. B, 23, 429, 1981. 27) R. Kenna, D. A. Johnston, W. Janke, Phys. Rev. Lett., 96, 115701, 2006 -- ibid., 97, 155702, 2006. 28) J. Salas, A. D. Sokal, J. Stat. Phys., 88, 567, 1997. 29) S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys. Lett. B, 195, 216, 1987. 30) M. Fukugita, H. Mino, M. Okawa, A. Ukawa, J. Phys. A, 23, L561, 1990. 31) F. Wu, Rev. Mod. Phys., 54, 235, 1982. 32) M. Hasenbusch, K. Pinn, J. Phys. A, 31, 6157, 1998. 33) M. Hasenbusch, K. Pinn, J. Phys. A, 31, 6157, 1998. 34) H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J. J. Ruiz-Lorenzo, J. Phys. A, 32, 1, 1999. 35) A. Pelissetto, E. Vicari, Phys. Rep., 368, 549, 2002. 36) M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, Phys. Rev. E, 65, 066127, 2002. 37) R. J. Baxter, J. Phys. C, 6, L445, 1973.
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FernándezPérezLuisAntonio16LIBRE.pdf
Size:
473.71 KB
Format:
Adobe Portable Document Format

Collections