Perspectives on Cathodes for Protonic Ceramic Fuel Cells
dc.contributor.author | Mather, Glenn | |
dc.contributor.author | Muñoz Gil, Daniel | |
dc.contributor.author | Zamudio-García, Javier | |
dc.contributor.author | Porras-Vázquez, José | |
dc.contributor.author | Marrero-López, David | |
dc.contributor.author | Pérez-Coll, Domingo | |
dc.date.accessioned | 2024-01-22T10:26:15Z | |
dc.date.available | 2024-01-22T10:26:15Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Protonic ceramic fuel cells (PCFCs) are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 C) proffers advantages in terms of greater component compatibility, unnecessity of expensive noble metals for the electrocatalyst, and no dilution of the fuel electrode due to water formation. Nevertheless, the lower operating temperature, in comparison to classic solid oxide fuel cells, places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors, oxide-ionic–electronic conductors, triple-conducting oxides, and composite electrodes composed of oxides from two of the other categories. Here, we review the relatively short history of PCFC cathode research, discussing trends, highlights, and recent progress. Current understanding of reaction mechanisms is also discussed. | |
dc.description.department | Depto. de Química Inorgánica | |
dc.description.faculty | Fac. de Ciencias Químicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.status | pub | |
dc.identifier.citation | Mather, G.C.; Muñoz-Gil, D.; Zamudio-García, J.; Porras-Vázquez, J.M.; Marrero-López, D.; Pérez-Coll, D. Perspectives on Cathodes for Protonic Ceramic Fuel Cells. Appl. Sci. 2021, 11, 5363. https://doi.org/10.3390/app11125363 | |
dc.identifier.doi | 10.3390/ app11125363 | |
dc.identifier.issn | 2076-3417 | |
dc.identifier.officialurl | https://doi.org/10.3390/app11125363 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/94286 | |
dc.journal.title | Applied Sciences | |
dc.language.iso | eng | |
dc.page.final | 5397 | |
dc.page.initial | 5363 | |
dc.publisher | Multidisciplinary Digital Publishing Institute | |
dc.relation.projectID | (FJCI-2017-31573) and FPU (FPU17/02621) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 546 | |
dc.subject.keyword | Proton ceramic fuel cell | |
dc.subject.keyword | Cathode | |
dc.subject.keyword | Triple-conducting oxides | |
dc.subject.keyword | Protonicelectronic conductor | |
dc.subject.keyword | Composite | |
dc.subject.ucm | Química inorgánica (Química) | |
dc.subject.unesco | 23 Química | |
dc.title | Perspectives on Cathodes for Protonic Ceramic Fuel Cells | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 11 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4b4d83e2-8876-4193-918b-bd57bde31fe6 | |
relation.isAuthorOfPublication.latestForDiscovery | 4b4d83e2-8876-4193-918b-bd57bde31fe6 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Protonic_Ceramic_Fuel_Cells.pdf
- Size:
- 6.79 MB
- Format:
- Adobe Portable Document Format